Open Access
Issue |
SICOT-J
Volume 2, 2016
|
|
---|---|---|
Article Number | 16 | |
Number of page(s) | 9 | |
Section | Spine | |
DOI | https://doi.org/10.1051/sicotj/2016004 | |
Published online | 20 April 2016 |
- Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27(18), 3413–3431. [CrossRef] [PubMed] [Google Scholar]
- Caplan AI (2007) Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 213(2), 341–347. [CrossRef] [PubMed] [Google Scholar]
- Quarto R, Mastrogiacomo M, Cancedda R, et al. (2001) Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med 344(5), 385–386. [CrossRef] [PubMed] [Google Scholar]
- Marcacci M, Kon E, Moukhachev V, et al. (2007) Stem cells associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study. Tissue Eng 13(5), 947–955. [CrossRef] [PubMed] [Google Scholar]
- Lichte P, Pape HC, Pufe T, Kobbe P, Fischer H (2011) Scaffolds for bone healing: concepts, materials and evidence. Injury 42(6), 569–573. [Google Scholar]
- Gronthos S, Brahim J, Li W, et al. (2002) Stem cell properties of human dental pulp stem cells. J Dent Res 81(8), 531–535. [CrossRef] [PubMed] [Google Scholar]
- Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 97(25), 13625–13630. [Google Scholar]
- Kraft DCE, Bindslev DA, Melsen B, Klein-Nulend J (2011) Human dental pulp cells exhibit bone cell-like responsiveness to fluid shear stress. Cytotherapy 13(2), 214–226. [CrossRef] [PubMed] [Google Scholar]
- Laino G, d’Aquino R, Graziano A, et al. (2005) A new population of human adult dental pulp stem cells: a useful source of living autologous fibrous bone tissue (LAB). J Bone Miner Res 20(8), 1394–1402. [CrossRef] [PubMed] [Google Scholar]
- Kraft DCE, Bindslev DA, Melsen B, Abdallah BM, Kassem M, Klein-Nulend J (2010) Mechanosensitivity of dental pulp stem cells is related to their osteogenic maturity. Eur J Oral Sci 118(1), 29–38. [CrossRef] [PubMed] [Google Scholar]
- Jensen J, Kraft DCE, Lysdahl H, et al. (2015) Functionalization of polycaprolactone scaffolds with hyaluronic acid and β-TCP facilitates migration and osteogenic differentiation of human dental pulp stem cells in vitro. Tissue Eng Part A 21(3–4), 729–739. [CrossRef] [PubMed] [Google Scholar]
- Jensen J, Rölfing JHD, Le DQS, et al. (2014) Surface-modified functionalized polycaprolactone scaffolds for bone repair: in vitro and in vivo experiments. J Biomed Mater Res A 102(9), 2993–3003. [CrossRef] [PubMed] [Google Scholar]
- Christensen BB, Foldager CB, Hansen OM, et al. (2012) A novel nano-structured porous polycaprolactone scaffold improves hyaline cartilage repair in a rabbit model compared to a collagen type I/III scaffold: in vitro and in vivo studies. Knee Surg Sports Traumatol Arthrosc 20(6), 1192–1204. [CrossRef] [PubMed] [Google Scholar]
- Zou L, Zou X, Chen L, et al. (2008) Effect of hyaluronan on osteogenic differentiation of porcine bone marrow stromal cells in vitro. J Orthop Res 26(5), 713–720. [CrossRef] [PubMed] [Google Scholar]
- Zou L, Luo Y, Chen M, et al. (2013) A simple method for deriving functional MSCs and applied for osteogenesis in 3D scaffolds. Sci Rep 3, 2243. [CrossRef] [PubMed] [Google Scholar]
- Rölfing JHD, Jensen J, Jensen JN, et al. (2014) A single topical dose of erythropoietin applied on a collagen carrier enhances calvarial bone healing in pigs. Acta orthopaedica 85(2), 201–209. [CrossRef] [PubMed] [Google Scholar]
- Mangano C, de Rosa A, Desiderio V, et al. (2010) The osteoblastic differentiation of dental pulp stem cells and bone formation on different titanium surface textures. Biomaterials 31(13), 3543–3551. [CrossRef] [PubMed] [Google Scholar]
- Ito K, Yamada Y, Nakamura S, Ueda M (2011) Osteogenic potential of effective bone engineering using dental pulp stem cells, bone marrow stem cells, and periosteal cells for osseointegration of dental implants. Int J Oral Maxillofac Implants 26(5), 947–954. [PubMed] [Google Scholar]
- Sun HJ, Bahk YY, Choi YR, Shim JH, Han SH, Lee JW (2006) A proteomic analysis during serial subculture and osteogenic differentiation of human mesenchymal stem cell. J Orthop Res 24(11), 2059–2071. [CrossRef] [PubMed] [Google Scholar]
- Kagami H, Agata H, Sumita Y, Tojo A (2011) Heterogeneous responses of human bone marrow stromal cells (multipotent mesenchymal stromal cells) to osteogenic induction, in Stem Cells and Cancer Stem Cells. Netherlands, Springer. [Google Scholar]
- Huang GTJ, Gronthos S, Shi S (2009) Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res 88(9), 792–806. [CrossRef] [PubMed] [Google Scholar]
- Otaki S, Ueshima S, Shiraishi K, et al. (2007) Mesenchymal progenitor cells in adult human dental pulp and their ability to form bone when transplanted into immunocompromised mice. Cell Biol Int 31(10), 1191–1197. [CrossRef] [PubMed] [Google Scholar]
- Reichert JC, Woodruff MA, Friis T, et al. (2010) Ovine bone- and marrow-derived progenitor cells and their potential for scaffold-based bone tissue engineering applications in vitro and in vivo. J Tissue Eng Regen Med 4(7), 565–576. [CrossRef] [PubMed] [Google Scholar]
- Graziano A, d’Aquino R, Laino G, Papaccio G (2008) Dental pulp stem cells: a promising tool for bone regeneration. Stem Cell Rev 4(1), 21–26. [CrossRef] [PubMed] [Google Scholar]
- Perry BC, Zhou D, Wu X, et al. (2008) Collection, cryopreservation, and characterization of human dental pulp-derived mesenchymal stem cells for banking and clinical use. Tissue Eng Part C Methods, 14(2), 149–156. [CrossRef] [PubMed] [Google Scholar]
- Wiltfang J, Kloss FR, Kessler P, et al. (2004) Effects of platelet-rich plasma on bone healing in combination with autogenous bone and bone substitutes in critical-size defects. An animal experiment. Clin Oral Implants Res 15(2), 187–193. [CrossRef] [PubMed] [Google Scholar]
- Schlegel KA, Lang FJ, Donath K, Kulow JT, Wiltfang J (2006) The monocortical critical size bone defect as an alternative experimental model in testing bone substitute materials. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 102(1), 7–13. [CrossRef] [PubMed] [Google Scholar]
- Sun H, Jung Y, Shiozawa Y, Taichman RS, Krebsbach PH (2012) Erythropoietin modulates the structure of bone morphogenetic protein 2-engineered cranial bone. Tissue Eng Part A 18(19–20), 2095–2105. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.