Open Access
Issue
SICOT-J
Volume 2, 2016
Article Number 16
Number of page(s) 9
Section Spine
DOI https://doi.org/10.1051/sicotj/2016004
Published online 20 April 2016
  1. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27(18), 3413–3431. [CrossRef] [PubMed]
  2. Caplan AI (2007) Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 213(2), 341–347. [CrossRef] [PubMed]
  3. Quarto R, Mastrogiacomo M, Cancedda R, et al. (2001) Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med 344(5), 385–386. [CrossRef] [PubMed]
  4. Marcacci M, Kon E, Moukhachev V, et al. (2007) Stem cells associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study. Tissue Eng 13(5), 947–955. [CrossRef] [PubMed]
  5. Lichte P, Pape HC, Pufe T, Kobbe P, Fischer H (2011) Scaffolds for bone healing: concepts, materials and evidence. Injury 42(6), 569–573. [CrossRef] [PubMed]
  6. Gronthos S, Brahim J, Li W, et al. (2002) Stem cell properties of human dental pulp stem cells. J Dent Res 81(8), 531–535. [CrossRef] [PubMed]
  7. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 97(25), 13625–13630. [CrossRef]
  8. Kraft DCE, Bindslev DA, Melsen B, Klein-Nulend J (2011) Human dental pulp cells exhibit bone cell-like responsiveness to fluid shear stress. Cytotherapy 13(2), 214–226. [CrossRef] [PubMed]
  9. Laino G, d’Aquino R, Graziano A, et al. (2005) A new population of human adult dental pulp stem cells: a useful source of living autologous fibrous bone tissue (LAB). J Bone Miner Res 20(8), 1394–1402. [CrossRef] [PubMed]
  10. Kraft DCE, Bindslev DA, Melsen B, Abdallah BM, Kassem M, Klein-Nulend J (2010) Mechanosensitivity of dental pulp stem cells is related to their osteogenic maturity. Eur J Oral Sci 118(1), 29–38. [CrossRef] [PubMed]
  11. Jensen J, Kraft DCE, Lysdahl H, et al. (2015) Functionalization of polycaprolactone scaffolds with hyaluronic acid and β-TCP facilitates migration and osteogenic differentiation of human dental pulp stem cells in vitro. Tissue Eng Part A 21(3–4), 729–739. [CrossRef] [PubMed]
  12. Jensen J, Rölfing JHD, Le DQS, et al. (2014) Surface-modified functionalized polycaprolactone scaffolds for bone repair: in vitro and in vivo experiments. J Biomed Mater Res A 102(9), 2993–3003. [CrossRef] [PubMed]
  13. Christensen BB, Foldager CB, Hansen OM, et al. (2012) A novel nano-structured porous polycaprolactone scaffold improves hyaline cartilage repair in a rabbit model compared to a collagen type I/III scaffold: in vitro and in vivo studies. Knee Surg Sports Traumatol Arthrosc 20(6), 1192–1204. [CrossRef] [PubMed]
  14. Zou L, Zou X, Chen L, et al. (2008) Effect of hyaluronan on osteogenic differentiation of porcine bone marrow stromal cells in vitro. J Orthop Res 26(5), 713–720. [CrossRef] [PubMed]
  15. Zou L, Luo Y, Chen M, et al. (2013) A simple method for deriving functional MSCs and applied for osteogenesis in 3D scaffolds. Sci Rep 3, 2243. [CrossRef] [PubMed]
  16. Rölfing JHD, Jensen J, Jensen JN, et al. (2014) A single topical dose of erythropoietin applied on a collagen carrier enhances calvarial bone healing in pigs. Acta orthopaedica 85(2), 201–209. [CrossRef] [PubMed]
  17. Mangano C, de Rosa A, Desiderio V, et al. (2010) The osteoblastic differentiation of dental pulp stem cells and bone formation on different titanium surface textures. Biomaterials 31(13), 3543–3551. [CrossRef] [PubMed]
  18. Ito K, Yamada Y, Nakamura S, Ueda M (2011) Osteogenic potential of effective bone engineering using dental pulp stem cells, bone marrow stem cells, and periosteal cells for osseointegration of dental implants. Int J Oral Maxillofac Implants 26(5), 947–954. [PubMed]
  19. Sun HJ, Bahk YY, Choi YR, Shim JH, Han SH, Lee JW (2006) A proteomic analysis during serial subculture and osteogenic differentiation of human mesenchymal stem cell. J Orthop Res 24(11), 2059–2071. [CrossRef] [PubMed]
  20. Kagami H, Agata H, Sumita Y, Tojo A (2011) Heterogeneous responses of human bone marrow stromal cells (multipotent mesenchymal stromal cells) to osteogenic induction, in Stem Cells and Cancer Stem Cells. Netherlands, Springer.
  21. Huang GTJ, Gronthos S, Shi S (2009) Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res 88(9), 792–806. [CrossRef] [PubMed]
  22. Otaki S, Ueshima S, Shiraishi K, et al. (2007) Mesenchymal progenitor cells in adult human dental pulp and their ability to form bone when transplanted into immunocompromised mice. Cell Biol Int 31(10), 1191–1197. [CrossRef] [PubMed]
  23. Reichert JC, Woodruff MA, Friis T, et al. (2010) Ovine bone- and marrow-derived progenitor cells and their potential for scaffold-based bone tissue engineering applications in vitro and in vivo. J Tissue Eng Regen Med 4(7), 565–576. [CrossRef] [PubMed]
  24. Graziano A, d’Aquino R, Laino G, Papaccio G (2008) Dental pulp stem cells: a promising tool for bone regeneration. Stem Cell Rev 4(1), 21–26. [CrossRef] [PubMed]
  25. Perry BC, Zhou D, Wu X, et al. (2008) Collection, cryopreservation, and characterization of human dental pulp-derived mesenchymal stem cells for banking and clinical use. Tissue Eng Part C Methods, 14(2), 149–156. [CrossRef] [PubMed]
  26. Wiltfang J, Kloss FR, Kessler P, et al. (2004) Effects of platelet-rich plasma on bone healing in combination with autogenous bone and bone substitutes in critical-size defects. An animal experiment. Clin Oral Implants Res 15(2), 187–193. [CrossRef] [PubMed]
  27. Schlegel KA, Lang FJ, Donath K, Kulow JT, Wiltfang J (2006) The monocortical critical size bone defect as an alternative experimental model in testing bone substitute materials. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 102(1), 7–13. [CrossRef] [PubMed]
  28. Sun H, Jung Y, Shiozawa Y, Taichman RS, Krebsbach PH (2012) Erythropoietin modulates the structure of bone morphogenetic protein 2-engineered cranial bone. Tissue Eng Part A 18(19–20), 2095–2105. [CrossRef] [PubMed]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.