Issue
SICOT-J
Volume 3, 2017
Special Issue: "Deformity correction, limb lengthening and reconstruction" Guest Editor: Y. ElBatrawy
Article Number 16
Number of page(s) 10
Section Lower Limb
DOI https://doi.org/10.1051/sicotj/2016043
Published online 21 February 2017
  1. Grant CA, Izatt MT, Labrom RD, Askin GN, Glatt V (2016) Use of 3D printing in complex spinal surgery: historical perspectives, current usage, and future directions. Tech Orthop 31(3), 172–180. [CrossRef] [Google Scholar]
  2. Green N, Glatt V, Tetsworth K, Wilson LJ, Grant CA (2016) A practical guide to image processing in the creation of 3d models for orthopedics. Tech Orthop 31(3), 153–163. [CrossRef] [Google Scholar]
  3. Kalamaras M, McEniery P, Thorn K, Bindra R (2016) Rapid prototyping and 3D modeling of osteotomy jigs and drill guides in hand and wrist surgery. Tech Orthop 31(3), 164–171. [CrossRef] [Google Scholar]
  4. Smith KE, Dupont KM, Safranski DL, Blair JW, Buratti DR, Zeetser V, Callahan R, Lin JS, Gall K (2016) Use of 3D printed bone plate in novel technique to surgically correct hallux valgus deformities. Tech Orthop 31(3), 181–189. [CrossRef] [PubMed] [Google Scholar]
  5. Tetsworth K (2016) Three-dimensional modeling, rapid prototypes, and additive manufacturing: the diffusion of innovation and the adoption of technology in orthopedic surgery. Tech Orthop 31(3), 141–142. [CrossRef] [Google Scholar]
  6. Tetsworth K, Mettyas T (2016) Overview of emerging technology in orthopedic surgery: what is the value in 3D modeling and printing? Tech Orthop 31(3), 143–152. [CrossRef] [Google Scholar]
  7. Buford WL Jr, Turnbow BJ, Gugala Z, Lindsey RW (2014) Three-dimensional computed tomography-based modeling of sagittal cadaveric femoral bowing and implications for intramedullary nailing. J Orthop Trauma 28(1), 10–16. [CrossRef] [PubMed] [Google Scholar]
  8. Harrysson OL, Hosni YA, Nayfeh JF (2007) Custom-designed orthopedic implants evaluated using finite element analysis of patient-specific computed tomography data: femoral-component case study. BMC Musculoskelet Disord 8, 91. [CrossRef] [PubMed] [Google Scholar]
  9. Jun Y, Choi K (2010) Design of patient-specific hip implants based on the 3D geometry of the human femur. Adv Eng Softw 41(4), 537–547. [CrossRef] [Google Scholar]
  10. ConforMIS (patient-specific guides and implants for TKA). http://www.conformis.com/. Accessed 17 September 2015. [Google Scholar]
  11. Materialise (planning software and patient-specific guides and jigs for orthopaedic surgery). http://ortho.materialise.com/. Accessed 8 September 2015. [Google Scholar]
  12. Optimized ortho (patient-specific positioning jigs for acetabular component in THA). http://www.optimizedortho.com/. Accessed 17 September 2015. [Google Scholar]
  13. OrthoView (planning software for orthopaedic surgery). http://www.orthoview.com/. Accessed 8 September 2015. [Google Scholar]
  14. Tornier BluePrint 3D Planning (software and patient-specific jigs for reverse TSA). http://www.tornierblueprint.com/. Accessed 29 September 2015. [Google Scholar]
  15. Edwards TB (2015) Computer-assisted preoperative planning: the future is now! Commentary on an article by Joseph P. Iannotti, MD, PhD, et al.: “Three-dimensional imaging and templating improve glenoid implant positioning”. J Bone Joint Surg Am 97(8), e41. [CrossRef] [PubMed] [Google Scholar]
  16. Iannotti JP, Weiner S, Rodriguez E, Subhas N, Patterson TE, Jun BJ, Ricchetti ET (2015) Three-dimensional imaging and templating improve glenoid implant positioning. J Bone Joint Surg Am 97(8), 651–658. [CrossRef] [PubMed] [Google Scholar]
  17. Zimmer PSI Shoulder (patient-specific jigs and drill guides for reverse TSA). http://www.zimmer.com/medical-professionals/products/shoulder/psi-shoulder-for-trabecular-metal-reverse-glenoid.html/. Accessed 29 September 2015. [Google Scholar]
  18. Brainlab (surgical navigation platform). https://www.brainlab.com/en/surgery-products/orthopedic-surgery-products/knee-navigation/. Accessed 17 October 2015. [Google Scholar]
  19. Stryker Nav3i (navigation for TKA). http://www.stryker.com/en-us/products/OREquipmentConnectivity/SurgicalNavigation/SurgicalNavigationSystems/index.htm. Accessed 17 September 2015. [Google Scholar]
  20. Siston RA, Giori NJ, Goodman SB, Delp SL (2007) Surgical navigation for total knee arthroplasty: a perspective. J Biomech 40(4), 728–735. [CrossRef] [PubMed] [Google Scholar]
  21. Iorio R, Pagnottelli M, Vadala A, Giannetti S, Di Sette P, Papandrea P, Conteduca F, Ferretti A (2013) Open-wedge high tibial osteotomy: comparison between manual and computer-assisted techniques. Knee Surg Sports Traumatol Arthrosc 21(1), 113–119. [CrossRef] [PubMed] [Google Scholar]
  22. Seon JK, Kim HS, Kim DY, Song EK (2014) Navigation guided open wedge high tibial osteotomy. J Korean Orthop Assoc 49(2), 107–117. [CrossRef] [Google Scholar]
  23. Colen S, Harake R, De Haan J, Mulier M (2013) A modified custom-made triflanged acetabular reconstruction ring (MCTARR) for revision hip arthroplasty with severe acetabular defects. Acta Orthop Belg 79(1), 71–75. [PubMed] [Google Scholar]
  24. Hasegawa M, Yoshida K, Wakabayashi H, Sudo A (2011) Minimally invasive total knee arthroplasty: comparison of jig-based technique versus computer navigation for clinical and alignment outcome. Knee Surg Sports Traumatol Arthrosc 19(6), 904–910. [CrossRef] [PubMed] [Google Scholar]
  25. Holt GE, Dennis DA (2004) Use of custom triflanged acetabular components in revision total hip arthroplasty. Clin Orthop Relat Res 429, 209–214. [CrossRef] [Google Scholar]
  26. Krishnan SP, Dawood A, Richards R, Henckel J, Hart AJ (2012) A review of rapid prototyped surgical guides for patient-specific total knee replacement. J Bone Joint Surg Br 94(11), 1457–1461. [CrossRef] [PubMed] [Google Scholar]
  27. Munjal S, Leopold SS, Kornreich D, Shott S, Finn HA (2000) CT-generated 3-dimensional models for complex acetabular reconstruction. J Arthroplasty 15(5), 644–653. [CrossRef] [PubMed] [Google Scholar]
  28. Nieminen J, Pakarinen TK, Laitinen M (2013) Orthopaedic reconstruction of complex pelvic bone defects. Evaluation of various treatment methods. Scand J Surg 102(1), 36–41. [CrossRef] [Google Scholar]
  29. Sariali E, Boukhelifa N, Catonne Y, Pascal-Moussellard H (2016) Comparison of three-dimensional planning-assisted and conventional acetabular cup positioning in total hip arthroplasty: a randomized controlled trial. J Bone Joint Surg Am 98(2), 108–116. [CrossRef] [PubMed] [Google Scholar]
  30. Schwartz A, Money K, Spangehl M, Hattrup S, Claridge RJ, Beauchamp C (2015) Office-based rapid prototyping in orthopedic surgery: a novel planning technique and review of the literature. Am J Orthop (Belle Mead NJ) 44(1), 19–25. [PubMed] [Google Scholar]
  31. Wind MA Jr, Swank ML, Sorger JI (2013) Short-term results of a custom triflange acetabular component for massive acetabular bone loss in revision THA. Orthopedics 36(3), e260–265. [CrossRef] [PubMed] [Google Scholar]
  32. Attias N, Lindsey RW, Starr AJ, Borer D, Bridges K, Hipp JA (2005) The use of a virtual three-dimensional model to evaluate the intraosseous space available for percutaneous screw fixation of acetabular fractures. J Bone Joint Surg Br 87(11), 1520–1523. [CrossRef] [PubMed] [Google Scholar]
  33. Fadero PE, Shah M (2014) Three dimensional (3D) modelling and surgical planning in trauma and orthopaedics. Surgeon 12(6), 328–333. [CrossRef] [PubMed] [Google Scholar]
  34. Geerling J, Kendoff D, Citak M, Zech S, Gardner MJ, Hufner T, Krettek C, Richter M (2009) Intraoperative 3D imaging in calcaneal fracture care-clinical implications and decision making. J Trauma 66(3), 768–773. [CrossRef] [PubMed] [Google Scholar]
  35. Hamid KS, Parekh SG, Adams SB (2016) Salvage of severe foot and ankle trauma with a 3D printed scaffold. Foot Ankle Int 37(4), 433–439. [CrossRef] [PubMed] [Google Scholar]
  36. Hsu AR, Ellington JK (2015) Patient-specific 3-dimensional printed titanium truss cage with tibiotalocalcaneal arthrodesis for salvage of persistent distal tibia nonunion. Foot Ankle Spec 8(6), 483–489. [CrossRef] [PubMed] [Google Scholar]
  37. Hu Y, Li H, Qiao G, Liu H, Ji A, Ye F (2011) Computer-assisted virtual surgical procedure for acetabular fractures based on real CT data. Injury 42(10), 1121–1124. [CrossRef] [PubMed] [Google Scholar]
  38. Jeong HS, Park KJ, Kil KM, Chong S, Eun HJ, Lee TS, Lee JP (2014) Minimally invasive plate osteosynthesis using 3D printing for shaft fractures of clavicles: technical note. Arch Orthop Trauma Surg 134(11), 1551–1555. [CrossRef] [Google Scholar]
  39. Kataoka T, Oka K, Miyake J, Omori S, Tanaka H, Murase T (2013) 3-Dimensional prebent plate fixation in corrective osteotomy of malunited upper extremity fractures using a real-sized plastic bone model prepared by preoperative computer simulation. J Hand Surg Am 38(5), 909–919. [CrossRef] [PubMed] [Google Scholar]
  40. Leong NL, Buijze GA, Fu EC, Stockmans F, Jupiter JB, Distal Radius Malunion collaborative g (2010) Computer-assisted versus non-computer-assisted preoperative planning of corrective osteotomy for extra-articular distal radius malunions: a randomized controlled trial. BMC Musculoskelet Disord 11, 282. [CrossRef] [PubMed] [Google Scholar]
  41. Qiao F, Li D, Jin Z, Gao Y, Zhou T, He J, Cheng L (2015) Application of 3D printed customized external fixator in fracture reduction. Injury 46(6), 1150–1155. [CrossRef] [PubMed] [Google Scholar]
  42. Lu S, Zhang YZ, Wang Z, Shi JH, Chen YB, Xu XM, Xu YQ (2012) Accuracy and efficacy of thoracic pedicle screws in scoliosis with patient-specific drill template. Med Biol Eng Comput 50(7), 751–758. [CrossRef] [PubMed] [Google Scholar]
  43. Ma T, Xu YQ, Cheng YB, Jiang MY, Xu XM, Xie L, Lu S (2012) A novel computer-assisted drill guide template for thoracic pedicle screw placement: a cadaveric study. Arch Orthop Trauma Surg 132(1), 65–72. [CrossRef] [Google Scholar]
  44. Merc M, Drstvensek I, Vogrin M, Brajlih T, Recnik G (2013) A multi-level rapid prototyping drill guide template reduces the perforation risk of pedicle screw placement in the lumbar and sacral spine. Arch Orthop Trauma Surg 133(7), 893–899. [CrossRef] [Google Scholar]
  45. Paiva WS, Amorim R, Bezerra DA, Masini M (2007) Application of the stereolithography technique in complex spine surgery. Arq Neuropsiquiatr 65(2B), 443–445. [CrossRef] [PubMed] [Google Scholar]
  46. Miyake J, Murase T, Moritomo H, Sugamoto K, Yoshikawa H (2011) Distal radius osteotomy with volar locking plates based on computer simulation. Clin Orthop Relat Res 469(6), 1766–1773. [CrossRef] [PubMed] [Google Scholar]
  47. Miyake J, Murase T, Oka K, Moritomo H, Sugamoto K, Yoshikawa H (2012) Computer-assisted corrective osteotomy for malunited diaphyseal forearm fractures. J Bone Joint Surg Am 94(20), e150. [CrossRef] [PubMed] [Google Scholar]
  48. Murase T, Oka K, Moritomo H, Goto A, Yoshikawa H, Sugamoto K (2008) Three-dimensional corrective osteotomy of malunited fractures of the upper extremity with use of a computer simulation system. J Bone Joint Surg Am 90(11), 2375–2389. [CrossRef] [PubMed] [Google Scholar]
  49. Oka K, Moritomo H, Goto A, Sugamoto K, Yoshikawa H, Murase T (2008) Corrective osteotomy for malunited intra-articular fracture of the distal radius using a custom-made surgical guide based on three-dimensional computer simulation: case report. J Hand Surg Am 33(6), 835–840. [CrossRef] [PubMed] [Google Scholar]
  50. Sheth U, Theodoropoulos J, Abouali J (2015) Use of 3-dimensional printing for preoperative planning in the treatment of recurrent anterior shoulder instability. Arthrosc Tech 4(4), e311–316. [CrossRef] [PubMed] [Google Scholar]
  51. Stoffelen DV, Eraly K, Debeer P (2015) The use of 3D printing technology in reconstruction of a severe glenoid defect: a case report with 2.5 years of follow-up. J Shoulder Elbow Surg 24(8), e218–222. [CrossRef] [PubMed] [Google Scholar]
  52. Gouin F, Paul L, Odri GA, Cartiaux O (2014) Computer-assisted planning and patient-specific instruments for bone tumor resection within the pelvis: a series of 11 patients. Sarcoma 2014, 842709. [CrossRef] [Google Scholar]
  53. Handels H, Ehrhardt J, Plotz W, Poppl SJ (2001) Three-dimensional planning and simulation of hip operations and computer-assisted construction of endoprostheses in bone tumor surgery. Comput Aided Surg 6(2), 65–76. [CrossRef] [PubMed] [Google Scholar]
  54. Ritacco LE, Milano FE, Farfalli GL, Ayerza MA, Muscolo DL, Aponte-Tinao LA (2013) Accuracy of 3-D planning and navigation in bone tumor resection. Orthopedics 36(7), e942–950. [CrossRef] [PubMed] [Google Scholar]
  55. Masquelet AC (2003) Muscle reconstruction in reconstructive surgery: soft tissue repair and long bone reconstruction. Langenbecks Arch Surg 388(5), 344–346. [CrossRef] [PubMed] [Google Scholar]
  56. Masquelet AC, Begue T (2010) The concept of induced membrane for reconstruction of long bone defects. Orthop Clin North Am 41(1), 27–37. [CrossRef] [PubMed] [Google Scholar]
  57. Masquelet AC, Fitoussi F, Begue T, Muller GP (2000) Reconstruction of the long bones by the induced membrane and spongy autograft. Ann Chir Plast Esthet 45(3), 346–353. [PubMed] [Google Scholar]
  58. McCall TA, Brokaw DS, Jelen BA, Scheid DK, Scharfenberger AV, Maar DC, Green JM, Shipps MR, Stone MB, Musapatika D, Weber TG (2010) Treatment of large segmental bone defects with reamer-irrigator-aspirator bone graft: technique and case series. Orthop Clin North Am 41(1), 63–73. [CrossRef] [PubMed] [Google Scholar]
  59. Pelissier P, Masquelet AC, Bareille R, Pelissier SM, Amedee J (2004) Induced membranes secrete growth factors including vascular and osteoinductive factors and could stimulate bone regeneration. J Orthop Res 22(1), 73–79. [CrossRef] [PubMed] [Google Scholar]
  60. Viateau V, Guillemin G, Calando Y, Logeart D, Oudina K, Sedel L, Hannouche D, Bousson V, Petite H (2006) Induction of a barrier membrane to facilitate reconstruction of massive segmental diaphyseal bone defects: an ovine model. Vet Surg 35(5), 445–452. [CrossRef] [PubMed] [Google Scholar]
  61. Cobos JA, Lindsey RW, Gugala Z (2000) The cylindrical titanium mesh cage for treatment of a long bone segmental defect: description of a new technique and report of two cases. J Orthop Trauma 14(1), 54–59. [CrossRef] [PubMed] [Google Scholar]
  62. O’Malley NT, Kates SL (2012) Advances on the Masquelet technique using a cage and nail construct. Arch Orthop Trauma Surg 132(2), 245–248. [CrossRef] [Google Scholar]
  63. MacKenzie EJ, Bosse MJ, Pollak AN, Webb LX, Swiontkowski MF, Kellam JF, Smith DG, Sanders RW, Jones AL, Starr AJ, McAndrew MP, Patterson BM, Burgess AR, Castillo RC (2005) Long-term persistence of disability following severe lower-limb trauma. Results of a seven-year follow-up. J Bone Joint Surg Am 87(8), 1801–1809. [PubMed] [Google Scholar]
  64. Paley D (1990) Problems, obstacles, and complications of limb lengthening by the Ilizarov technique. Clin Orthop Relat Res 250, 81–104. [Google Scholar]
  65. Tetsworth K, Dlaska CE (2015) the art of tibial bone transport using the Ilizarov fixator: the suspension wire technique. Tech Orthop 30(3), 142–155. [CrossRef] [Google Scholar]
  66. Tetsworth K, Paley D (1995) Basic science of distraction histogenesis. Curr Opin Orthop 6(6), 61–68. [CrossRef] [Google Scholar]
  67. Hertel R, Gerber A, Schlegel U, Cordey J, Ruegsegger P, Rahn BA (1994) Cancellous bone graft for skeletal reconstruction. Muscular versus periosteal bed – preliminary report. Injury 25(Suppl 1), A59–A70. [CrossRef] [PubMed] [Google Scholar]
  68. Weiland AJ, Phillips TW, Randolph MA (1984) Bone grafts: a radiologic, histologic, and biomechanical model comparing autografts, allografts, and free vascularized bone grafts. Plast Reconstr Surg 74(3), 368–379. [CrossRef] [PubMed] [Google Scholar]
  69. Pollak AN, Ficke JR, Extremity War Injuries IIISM (2008) Extremity war injuries: challenges in definitive reconstruction. J Am Acad Orthop Surg 16(11), 628–634. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.