Issue |
SICOT-J
Volume 6, 2020
Special Issue: "HIP and KNEE Replacement" Guest Editors: C Batailler, S Lustig, J Caton
|
|
---|---|---|
Article Number | 45 | |
Number of page(s) | 13 | |
DOI | https://doi.org/10.1051/sicotj/2020041 | |
Published online | 27 November 2020 |
- Liu Z, Gao Y, Cai L (2015) Imageless navigation versus traditional method in total hip arthroplasty: A meta-analysis. Int J Surg 21, 122–127. [CrossRef] [Google Scholar]
- Banerjee S, Cherian JJ, Elmallah RK, et al. (2016) Robot-assisted total hip arthroplasty. Expert Rev Med Devices 13, 47–56. [CrossRef] [PubMed] [Google Scholar]
- Khanuja HS, Vakil JJ, Goddard MS, Mont MA (2011) Cementless femoral fixation in total hip arthroplasty. J Bone Jt Surg 93, 500–509. [CrossRef] [Google Scholar]
- Paul HA, Bargar WL, Mittlestadt B, et al. (1992) Development of a surgical robot for cementless total hip arthroplasty. Clin Orthop 285, 57–66. [Google Scholar]
- Lewinnek GE, Lewis JL, Tarr R, et al. (1978) Dislocations after total hip-replacement arthroplasties. J Bone Joint Surg Am 60, 217–220. [CrossRef] [PubMed] [Google Scholar]
- Yoder SA, Brand RA, Pedersen DR, O’Gorman TW (1988) Total hip acetabular component position affects component loosening rates. Clin Orthop 228, 79–87. [Google Scholar]
- Bozic KJ, Kurtz SM, Lau E, et al. (2009) The epidemiology of revision total hip arthroplasty in the United States. J Bone Jt Surg Am 91, 128–133. [CrossRef] [Google Scholar]
- DiGioia AM, Jaramaz B, Blackwell M, et al. (1998) Image guided navigation system to measure intraoperatively acetabular implant alignment. Clin Orthop 355, 8–22. [CrossRef] [Google Scholar]
- Callanan MC, Jarrett B, Bragdon CR, et al. (2011) The John Charnley Award: Risk factors for cup malpositioning: quality improvement through a joint registry at a tertiary hospital. Clin Orthop Relat Res 469, 319–329. [CrossRef] [PubMed] [Google Scholar]
- Barrack RL, Krempec JA, Clohisy JC, et al. (2013) Accuracy of acetabular component position in hip arthroplasty. J Bone Jt Surg Am 95, 1760–1768. [CrossRef] [Google Scholar]
- Jolles BM, Zangger P, Leyvraz P-F (2002) Factors predisposing to dislocation after primary total hip arthroplasty: A multivariate analysis. J Arthroplasty 17, 282–288. [CrossRef] [PubMed] [Google Scholar]
- Haaker RGA, Tiedjen K, Ottersbach A, et al. (2007) Comparison of conventional versus computer-navigated acetabular component insertion. J Arthroplasty 22, 151–159. [CrossRef] [Google Scholar]
- Montgomery BK, Bala A, Huddleston JI, et al. (2019) Computer navigation vs conventional total hip arthroplasty: A Medicare database analysis. J Arthroplasty 34, 1994–1998.e1. [CrossRef] [PubMed] [Google Scholar]
- Parratte S, Argenson J-N (2007) Validation and usefulness of a computer-assisted cup-positioning system in total hip arthroplasty a prospective, randomized, controlled study. J Bone Joint Surg Am 89-A, 494–497. [CrossRef] [Google Scholar]
- Kalteis T, Handel M, Bäthis H, et al. (2006) Imageless navigation for insertion of the acetabular component in total hip arthroplasty: Is it as accurate as CT-based navigation? J Bone Joint Surg Br 88-B, 163–167. [CrossRef] [PubMed] [Google Scholar]
- Pagkalos J, Chaudary MI, Davis ET (2014) Navigating the reaming of the acetabular cavity in total hip arthroplasty: Does it improve implantation accuracy? J Arthroplasty 29, 1749–1752. [CrossRef] [PubMed] [Google Scholar]
- Meermans G, Doorn JV, Kats J-J (2016) Restoration of the centre of rotation in primary total hip arthroplasty: the influence of acetabular floor depth and reaming technique. Bone Jt J 98-B, 1597–1603. [CrossRef] [Google Scholar]
- Shao P, Li Z, Yang M, et al. (2018) Impact of acetabular reaming depth on reconstruction of rotation center in primary total hip arthroplasty. BMC Musculoskelet Disord 19, 425. [CrossRef] [Google Scholar]
- Dastane M, Dorr LD, Tarwala R, Wan Z (2011) Hip offset in total hip arthroplasty: Quantitative measurement with navigation. Clin Orthop Relat Res 469, 429–436. [CrossRef] [PubMed] [Google Scholar]
- Chen AF, Kazarian GS, Jessop GW, Makhdom A (2018) Robotic technology in orthopaedic surgery. J Bone Jt Surg 100, 1984–1992. [CrossRef] [Google Scholar]
- Reina N, Putman S, Desmarchelier R, et al. (2017) Can a target zone safer than Lewinnek’s safe zone be defined to prevent instability of total hip arthroplasties? Case-control study of 56 dislocated THA and 93 matched controls. Orthop Traumatol Surg Res 103, 657–661. [CrossRef] [PubMed] [Google Scholar]
- Jacofsky DJ, Allen M (2016) Robotics in arthroplasty: A comprehensive review. J Arthroplasty. 31, 2353–2363. [CrossRef] [PubMed] [Google Scholar]
- Tarwala R, Dorr LD (2011) Robotic assisted total hip arthroplasty using the MAKO platform. Curr Rev Musculoskelet Med 4, 151–156. [CrossRef] [PubMed] [Google Scholar]
- Tsai T-Y, Dimitriou D, Li J-S, Kwon Y-M (2016) Does haptic robot-assisted total hip arthroplasty better restore native acetabular and femoral anatomy? Robot-assisted total hip arthroplasty better restores hip anatomy. Int J Med Robot 12, 288–295. [CrossRef] [PubMed] [Google Scholar]
- Nawabi DH, Conditt MA, Ranawat AS, et al. (2013) Haptically guided robotic technology in total hip arthroplasty: A cadaveric investigation. Proc Inst Mech Eng [H] 227, 302–309. [Google Scholar]
- DiGioia AM, Jamaraz B, Picard F, Nolte L-P (2004). Computer and robotic assisted hip and knee surgery. Oxford University Press. [Google Scholar]
- Netravali NA, Shen F, Park Y, Bargar WL (2013) A perspective on robotic assistance for knee arthroplasty. Adv Orthop 2013, 1–9. [CrossRef] [Google Scholar]
- Schneider J, Kalender W (2003) Geometric accuracy in robot-assisted total hip replacement surgery. Comput Aided Surg 8, 135–145. [CrossRef] [PubMed] [Google Scholar]
- Sugano N (2003) Computer-assisted orthopedic surgery. J Orthop Sci Off J Jpn Orthop Assoc 8, 442–448. [Google Scholar]
- Haraguchi K, Sugano N, Nishii T, et al. (2001) Comparison of fit and fill between anatomic stem and straight tapered stem using virtual implantation on the ORTHODOC workstation. Comput Aided Surg Off J Int Soc Comput Aided Surg 6, 290–296. [CrossRef] [Google Scholar]
- Jerosch J, Peuker E, von Hasselbach C, et al. (1999) Computer assisted implantation of the femoral stem in THA – an experimental study. Int Orthop 23, 224–226. [CrossRef] [PubMed] [Google Scholar]
- Wu L, Hahne HJ, Hassenpflug J (2004) The dimensional accuracy of preparation of femoral cavity in cementless total hip arthroplasty. J Zhejiang Univ – Sci A 5, 1270–1278. [CrossRef] [Google Scholar]
- Decking J, Gerber A, Kränzlein J, et al. (2004) The primary stability between manual and robot assisted implantation of hip prostheses: A biomechanical study on synthetic femurs. Z Orthop Ihre Grenzgeb 142, 309–313. [CrossRef] [Google Scholar]
- Perets I, Mu BH, Mont MA, et al. (2020) Current topics in robotic-assisted total hip arthroplasty: a review. HIP Int 30, 118–124. [CrossRef] [PubMed] [Google Scholar]
- Murray DW (1993) The definition and measurement of acetabular orientation. J Bone Joint Surg Br 75, 228–232. [CrossRef] [PubMed] [Google Scholar]
- Stefl M, Lundergan W, Heckmann N, et al. (2017) Spinopelvic mobility and acetabular component position for total hip arthroplasty. Bone Jt J 99-B, 37–45. [CrossRef] [Google Scholar]
- Thelen T, Thelen P, Demezon H, et al. (2017) Normative 3D acetabular orientation measurements by the low-dose EOS imaging system in 102 asymptomatic subjects in standing position: Analyses by side, gender, pelvic incidence and reproducibility. Orthop Traumatol Surg Res 103, 209–215. [CrossRef] [PubMed] [Google Scholar]
- Domb BG, Redmond JM, Louis SS, et al. (2015) Accuracy of component positioning in 1980 total hip arthroplasties: A comparative analysis by surgical technique and mode of guidance. J Arthroplasty 30, 2208–2218. [CrossRef] [PubMed] [Google Scholar]
- Chun YS, Kim KI, Cho YJ, et al. (2011) Causes and patterns of aborting a robot-assisted arthroplasty. J Arthroplasty 26, 621–625. [CrossRef] [PubMed] [Google Scholar]
- Nishihara S, Sugano N, Nishii T, et al. (2006) Comparison between hand rasping and robotic milling for stem implantation in cementless total hip arthroplasty. J Arthroplasty 21, 957–966. [CrossRef] [PubMed] [Google Scholar]
- Bargar WL, Parise CA, Hankins A, et al. (2018) Fourteen year follow-up of randomized clinical trials of active robotic-assisted total hip arthroplasty. J Arthroplasty 33, 810–814. [CrossRef] [PubMed] [Google Scholar]
- Honl M, Dierk O, Gauck C, et al. (2003) Comparison of robotic-assisted and manual implantation of a primary total hip replacement: A prospective study. J Bone Jt Surg Am 85, 1470–1478. [CrossRef] [PubMed] [Google Scholar]
- Nakamura N, Sugano N, Nishii T, et al. (2010) A comparison between robotic-assisted and manual implantation of cementless total hip arthroplasty. Clin Orthop Relat Res 468, 1072–1081. [CrossRef] [PubMed] [Google Scholar]
- Schulz AP, Seide K, Queitsch C, et al. (2007) Results of total hip replacement using the Robodoc surgical assistant system: clinical outcome and evaluation of complications for 97 procedures. Int J Med Robot 3, 301–306. [CrossRef] [PubMed] [Google Scholar]
- Bargar WL, Bauer A, Börner M (1998) Primary and revision total hip replacement using the Robodoc® system. Clin Orthop 354, 82–91. [Google Scholar]
- Lim S-J, Ko K-R, Park C-W, et al. (2015) Robot-assisted primary cementless total hip arthroplasty with a short femoral stem: A prospective randomized short-term outcome study. Comput Aided Surg 20, 41–46. [CrossRef] [PubMed] [Google Scholar]
- Elson L, Dounchis J, Illgen R, et al. (2015) Precision of acetabular cup placement in robotic integrated total hip arthroplasty. HIP Int 25, 531–536. [CrossRef] [PubMed] [Google Scholar]
- Nodzo SR, Chang C-C, Carroll KM, et al. (2018) Intraoperative placement of total hip arthroplasty components with robotic-arm assisted technology correlates with postoperative implant position: A CT-based study. Bone Jt J 100-B, 1303–1309. [CrossRef] [Google Scholar]
- Illgen RL, Bukowski BR, Abiola R, et al. (2017) Robotic-assisted total hip arthroplasty: Outcomes at minimum two-year follow-up. Surg Technol Int 30, 365–372. [PubMed] [Google Scholar]
- Kayani B, Konan S, Thakrar RR, et al. (2019) Assuring the long-term total joint arthroplasty: A triad of variables. Bone Jt J 101-B, 11–18. [Google Scholar]
- Kamara E, Robinson J, Bas MA, et al. (2017) Adoption of robotic vs fluoroscopic guidance in total hip arthroplasty: Is acetabular positioning improved in the learning curve? J Arthroplasty 32, 125–130. [CrossRef] [PubMed] [Google Scholar]
- Kong X, Yang M, Jerabek S, et al. (2020) A retrospective study comparing a single surgeon’s experience on manual versus robot-assisted total hip arthroplasty after the learning curve of the latter procedure – A cohort study. Int J Surg 77, 174–180. [Google Scholar]
- Han P, Chen C, Zhang Z, et al. (2019) Robotics-assisted versus conventional manual approaches for total hip arthroplasty: A systematic review and meta-analysis of comparative studies. Int J Med Robot 15, e1990. [PubMed] [Google Scholar]
- Kanawade V, Dorr LD, Banks SA, et al. (2015) Precision of robotic guided instrumentation for acetabular component positioning. J Arthroplasty 30, 392–397. [CrossRef] [PubMed] [Google Scholar]
- Redmond JM, Gupta A, Hammarstedt JE, et al. (2016) Accuracy of component placement in robotic-assisted total hip arthroplasty. Orthopedics 39, 193–199. [CrossRef] [PubMed] [Google Scholar]
- El Bitar YF, Jackson TJ, Lindner D, et al. (2015) Predictive value of robotic-assisted total hip arthroplasty. Orthopedics 38, e31–e37. [CrossRef] [PubMed] [Google Scholar]
- Suarez-Ahedo C, Gui C, Martin TJ, et al. (2017) Robotic-arm assisted total hip arthroplasty results in smaller acetabular cup size in relation to the femoral head size: A matched-pair controlled study. HIP Int 27, 147–152. [CrossRef] [PubMed] [Google Scholar]
- Abdel MP, von Roth P, Jennings MT, et al. (2016) What safe zone? The vast majority of dislocated THAs are within the Lewinnek safe zone for acetabular component position. Clin Orthop Relat Res 474, 386–391. [CrossRef] [PubMed] [Google Scholar]
- Dorr LD, Callaghan JJ (2019) Death of the Lewinnek “Safe Zone”. J Arthroplasty 34, 1–2. [CrossRef] [PubMed] [Google Scholar]
- Widmer K-H, Zurfluh B (2004) Compliant positioning of total hip components for optimal range of motion. J Orthop Res 22, 815–821. [CrossRef] [PubMed] [Google Scholar]
- Maruyama M, Feinberg JR, Capello WN, D’Antonio JA (2001) The Frank Stinchfield Award: Morphologic features of the acetabulum and femur: Anteversion angle and implant positioning Clin Orthop 393, 52–65. [Google Scholar]
- McKibbin B (1970) Anatomical factors in the stability of the hip joint in the newborn. J Bone Joint Surg Br 52, 148–159. [CrossRef] [PubMed] [Google Scholar]
- Dorr LD, Malik A, Dastane M, Wan Z (2009) Combined anteversion technique for total hip arthroplasty. Clin Orthop 467, 119–127. [Google Scholar]
- Nakashima Y, Hirata M, Akiyama M, et al. (2014) Combined anteversion technique reduced the dislocation in cementless total hip arthroplasty. Int Orthop 38, 27–32. [CrossRef] [PubMed] [Google Scholar]
- Marcovigi A, Ciampalini L, Perazzini P, et al. (2019) Evaluation of native femoral neck version and final stem version variability in patients with osteoarthritis undergoing robotically implanted total hip arthroplasty. J Arthroplasty 34, 108–115. [CrossRef] [PubMed] [Google Scholar]
- Faizan A, Gerges JJ, Asencio G, et al. (2016) Changes in femoral version during implantation of anatomic stems: Implications on stem design. J Arthroplasty 31, 512–516. [CrossRef] [PubMed] [Google Scholar]
- Domb BG, Chandrasekaran S, Gui C, et al. (2017) Can stem version consistently correct native femoral version using robotic guidance in total hip arthroplasty? Surg Technol Int 31, 389–395. [PubMed] [Google Scholar]
- Masumoto Y, Fukunishi S, Fukui T, et al. (2020) New combined anteversion technique in hybrid THA: Cup-first procedure with CT-based navigation. Eur J Orthop Surg Traumatol 30, 465–472. [CrossRef] [PubMed] [Google Scholar]
- McGrory BJ, Morrey BF, Cahalan TD, et al. (1995) Effect of femoral offset on range of motion and abductor muscle strength after total hip arthroplasty. J Bone Joint Surg Br 77, 865–869. [CrossRef] [PubMed] [Google Scholar]
- Bukowski BR, Anderson P, Khlopas A, et al. (2016) Improved functional outcomes with robotic compared with manual total hip arthroplasty. Surg Technol Int 29, 303–308. [PubMed] [Google Scholar]
- Redmond JM, Gupta A, Hammarstedt JE, et al. (2015) The learning curve associated with robotic-assisted total hip arthroplasty. J Arthroplasty 30, 50–54. [CrossRef] [PubMed] [Google Scholar]
- Kayani B, Konan S, Huq SS, et al. (2019) The learning curve of robotic-arm assisted acetabular cup positioning during total hip arthroplasty. HIP Int 112070001988933. [Google Scholar]
- Heng YY, Gunaratne R, Ironside C, Taheri A (2018) Conventional vs robotic arm assisted total hip arthroplasty (THA) surgical time, transfusion rates, length of stay, complications and learning curve. J Arthritis 07, 4. [Google Scholar]
- Gupta A, Redmond JM, Hammarstedt JE, et al. (2015) Does robotic-assisted computer navigation affect acetabular cup positioning in total hip arthroplasty in the obese patient? A comparison study. J Arthroplasty 30, 2204–2207. [CrossRef] [PubMed] [Google Scholar]
- Siebel T, Käfer W (2005) Klinisches Outcome nach Roboter-assistierter versus konventionell implantierter Hüftendoprothetik: Prospektive, kontrollierte Untersuchung von 71 Patienten. Z Für Orthop Ihre Grenzgeb 143, 391–398. [CrossRef] [Google Scholar]
- Hsieh CM, Howell SM, Hull ML (2020) Errors in Femoral Anteversion, Femoral Offset, and Vertical Offset Following Robot-Assisted Total Hip Arthroplasty. Int J Med Robot 16, e2104. [CrossRef] [PubMed] [Google Scholar]
- Perets I, Walsh JP, Close MR, et al. (2018) Robot-assisted total hip arthroplasty: Clinical outcomes and complication rate. Int J Med Robot 14, e1912. [CrossRef] [PubMed] [Google Scholar]
- Behrend H, Giesinger K, Giesinger JM, Kuster MS (2012) The “forgotten joint” as the ultimate goal in joint arthroplasty: validation of a new patient-reported outcome measure. J Arthroplasty 27, 430–436.e1. [CrossRef] [PubMed] [Google Scholar]
- Domb B, Rabe S, Walsh JP, et al. (2016) Outpatient robotic-arm total hip arthroplasty surgical technique. Surg Technol Int 29, 235–239. [PubMed] [Google Scholar]
- Moschetti WE, Konopka JF, Rubash HE, Genuario JW (2016) Can robot-assisted unicompartmental knee arthroplasty be cost-effective? A Markov decision analysis. J Arthroplasty 31, 759–765. [CrossRef] [PubMed] [Google Scholar]
- Mantwill F, Schulz AP, Faber A, et al. (2005) Robotic systems in total hip arthroplasty – is the time ripe for a new approach? Int J Med Robot 1, 8–19. [CrossRef] [PubMed] [Google Scholar]
- Nakamura N, Sugano N, Sakai T, Nakahara I (2018) Does robotic milling for stem implantation in cementless THA result in improved outcomes scores or survivorship compared with hand rasping? Results of a randomized trial at 10 years. Clin Orthop 476, 2169–2173. [Google Scholar]
- Domb BG, El Bitar YF, Sadik AY, et al. (2014) Comparison of robotic-assisted and conventional acetabular cup placement in THA: A matched-pair controlled study. Clin Orthop Relat Res 472, 329–336. [CrossRef] [PubMed] [Google Scholar]
- El Bitar YFE, Stone JC, Jackson TJ, et al. (2015) Leg-length discrepancy after total hip arthroplasty: Comparison of robot-assisted posterior, fluoroscopy-guided anterior, and conventional posterior approaches. Am J Orthop (Belle Mead NJ) 44, 265–269. [Google Scholar]
- Hananouchi T, Sugano N, Nishii T, et al. (2007) Effect of robotic milling on periprosthetic bone remodeling. J Orthop Res 25, 1062–1069. [CrossRef] [PubMed] [Google Scholar]
- Banchetti R, Dari S, Ricciarini ME, et al. (2018) Comparison of conventional versus robotic-assisted total hip arthroplasty using the Mako system: An Italian retrospective study. J Health Soc Sci 3, 37–48. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.