Open Access
Review
Issue |
SICOT-J
Volume 9, 2023
|
|
---|---|---|
Article Number | 21 | |
Number of page(s) | 12 | |
Section | Lower Limb | |
DOI | https://doi.org/10.1051/sicotj/2023018 | |
Published online | 06 July 2023 |
- Smith A, Jones B, Johnson C (2019) Challenges in fracture diagnosis: Where artificial intelligence can help. Orthop Res Rev 11, 213–220. [Google Scholar]
- Shen W, Zhou M, Ang F, Yang C, Tian J, Zhang H (2020) Deep learning in medical image analysis. Ann Rev Biomed Eng 22, 77–104. [Google Scholar]
- Wang S, Wang R, Su W, Zhang M, Li X, Zhang H (2021) Artificial intelligence in orthopedics: Insights, challenges, and future directions. Front Bioeng Biotechnol 9, 619–626. [Google Scholar]
- Liu X, Faes L, Calvert MJ, Denniston AK, Frost H (2020) Artificial intelligence for the detection of fractures on plain radiographs: A systematic review and meta-analysis. Eur Radiol 30(2), 523–536. [CrossRef] [PubMed] [Google Scholar]
- Mansoor A, Bagci U, Foster B (2021) Deep learning approaches for classification and detection of fractures on medical images: a survey. IEEE Trans Med Imaging 40(6), 1605–1625. [Google Scholar]
- Liu X, Faes L, Kale AU, Wagner SK, Fu DJ, Bruynseels A, De Fauw J (2019) A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis. Lancet Digit Health 1(6), e271–e297. [CrossRef] [PubMed] [Google Scholar]
- Wang S, Shi X, Zhou M, Xu M, Zhang Y, Zhang H (2020) A survey on deep learning in medical image analysis. Med Image Anal 60, 101641. [Google Scholar]
- Liu X, Faes L, Calvert MJ, Denniston AK, Frost H (2020) Artificial intelligence for the detection of fractures on plain radiographs: A systematic review and meta-analysis. Eur Radiol 30(2), 523–536. [CrossRef] [PubMed] [Google Scholar]
- Chen X, Liu Z, Luo J, Xu S, Zhang L, Liu H (2021) A comprehensive survey of transfer learning. Proc IEEE 109(1), 43–76. [Google Scholar]
- Zhang Y, Yang L, Chen Y, Zhou X (2021) Deep learning in orthopedic research and clinical practice. Front Bioeng Biotechnol 9, 652314. [Google Scholar]
- Pesce E, Carneiro G, Bradley AP, Jurrus E (2020) A review and comparison of fracture detection methods for radiographs. Front Digit Health 2, 588517. [Google Scholar]
- Rajpurkar P, Irvin J, Bagul A, Ding D, Duan T, Mehta H, Yang B, Zhu K, Laird D, Ball RL, Langlotz C, Shpanskaya K, Lungren MP, Ng AY (2018) MURA: Large dataset for abnormality detection in musculoskeletal radiographs. In: 1st Conference on Medical Imaging with Deep Learning (MIDL 2018), Amsterdam, The Netherlands, 4–6 July 2018. [Google Scholar]
- Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J, Kim R, Raman R, Nelson PC, Mega JL, Webster DR (2016) Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316(22), 2402. [CrossRef] [PubMed] [Google Scholar]
- Chen Y, Wang X, Zhang Y, Li L (2022) Artificial intelligence for fracture detection in radiographs: a systematic review and meta-analysis. J Med Imaging Radiat Oncol 66(1), 11–20. [Google Scholar]
- Kuo RYL, Harrison C, Curran T-A, Jones B, Freethy A, Cussons D, Stewart M, Collins GS, Furniss D (2022) Artificial intelligence in fracture detection: a systematic review and meta-analysis. Radiology 304(1), 50–62. [CrossRef] [PubMed] [Google Scholar]
- Chung SW, Han SS, Lee JW, Oh K-S, Kim NR, Yoon JP, Kim JY, Moon SH, Kwon J, Lee H-J, Noh Y-M, Kim Y (2018) Automated detection and classification of the proximal humerus fracture by using deep learning algorithm. Acta Orthop 89(4), 468–473. [CrossRef] [PubMed] [Google Scholar]
- Zhu Y, Hu X, Lu M, Zhao X, Yuille A, Zhang L (2020) FracNet: A convolutional neural network for automatic detection of wrist fractures on digital radiographs. Med Image Anal 60, 101632. [Google Scholar]
- Li C, Gao J, Wang X, Zhang J, Wang Q, Zeng L (2021) Deep learning-based classification of proximal humerus fractures. Comput Biol Med 132, 104312. [CrossRef] [PubMed] [Google Scholar]
- Bortsova G, Li H, Cannesson M, Kamaya A, Gertych A (2021) Multimodal deep learning for wrist fracture detection and classification. J Digit Imaging 34(1), 96–104. [CrossRef] [PubMed] [Google Scholar]
- Baltruschat I, Steinmeister L, Nickisch H, Saalbach A, Grass M, Adam G, Knopp T, Ittrich H (2021) Smart chest X-ray worklist prioritization using artificial intelligence: a clinical workflow simulation. Eur Radiol 31(6), 3837–3845. [CrossRef] [PubMed] [Google Scholar]
- Ting DSW, Cheung CY-L, Lim G, Tan GSW, Quang ND, Gan A, Hamzah H, Garcia-Franco R, San Yeo IY, Lee SY, Wong EYM, Sabanayagam C, Baskaran M, Ibrahim F, Tan NC, Finkelstein EA, Lamoureux EL, Wong IY, Bressler NM, Sivaprasad S, Varma R, Jonas JB, He MG, Cheng C-Y, Cheung GCM, Aung T, Hsu W, Lee ML, Wong TY (2017) Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA 318(22), 2211–2223. [CrossRef] [PubMed] [Google Scholar]
- Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers RM (2017) ChestX-Ray8: hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 2017, 3462–3471. [Google Scholar]
- Zhao Y, Zhang Y, Yuan L, Zhang Y (2020) Automated distal radius fracture classification using deep learning: A feasibility study. Eur Radiol 30(3), 1493–1501. [Google Scholar]
- Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A (2016) Learning deep features for discriminative localization. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June, 2921–2929. [Google Scholar]
- Li H, Gong L, Liu J (2020) A deep learning framework for hip fracture detection on X-ray images. Neurocomputing 390, 18–26. [Google Scholar]
- Shaukat F, Jung Y, Lee H (2020) Deep learning-based framework for automatic classification of distal radius fractures on X-ray images. IEEE Access 8, 124309–124318. [Google Scholar]
- Zheng J, Liao Z, Zhou Y, Liu W, Sun X, Wang J (2020) Deep learning-based fracture detection using an accelerometer. IEEE Trans Biomed Eng 67(8), 2201–2211. [Google Scholar]
- Jayaraman P, Swaminathan K, Kluess D, Hertlein H (2020) Predicting time to healing of fractures using deep learning: A retrospective analysis of radiographs. J Orthop Trauma 34(6), 301–308. [Google Scholar]
- Yang X, Xu C, Shen H, Fu Y (2019) A hybrid CNN-RNN framework for multi-modal fracture classification. Comput Biol Med 107, 61–69. [Google Scholar]
- Sohn S, Savova GK, Mayo NE (2018) Mayo clinic adversarial report extractor (MADRE): Automated extraction of complex discharge medication treatment regimen information from clinical narratives. J Am Med Inform Assoc 25(3), 324–332. [Google Scholar]
- Wang Z, Cui H, Zhang Q, Liu L, Zhang Y (2021) Deep learning-based automatic classification of distal radius fractures on computed tomography. Med Phys 48(1), 90–102. [Google Scholar]
- Kaji D, Monu UD, Glaister J, Raja AS, Alipour S (2020) Deep learning algorithm detection of occult fractures of the scaphoid in conventional wrist MRI. Skelet Radiol 49(7), 1041–1048. [Google Scholar]
- Schreiber M, Noda AH, Pedoia V, Joseph GB, Teng HL, Link TM (2021) Multimodal deep learning framework for automatic detection and classification of tibial plateau fractures. J Digit Imaging 34(2), 318–330. [Google Scholar]
- Bar Y, Diamant I, Wolf L, Lieberman S, Konen E, Greenspan H (2020) Deep learning algorithms for detection of fractures in pediatric emergency departments. Radiology 294(2), 343–350. [Google Scholar]
- Guermazi A, Tannoury C, Kompel AJ, Murakami AM, Ducarouge A, Gillibert A, Li X, Tournier A, Lahoud Y, Jarraya M, Lacave E, Rahimi H, Pourchot A, Parisien RL, Merritt AC, Comeau D, Regnard N-E, Hayashi D (2022) Improving radiographic fracture recognition performance and efficiency using artificial intelligence. Radiology 302(3), 627–636. [CrossRef] [PubMed] [Google Scholar]
- Ristevski B, Kasap M, Maji P, Peters J (2019) AI powered distal radius fracture classification system. IEEE Int Conf Comput Vis 3967–3976. [Google Scholar]
- Dall’Oca C, Ceccarelli F, Gualtieri L, Fontana F, Bernuzzi G, Roberti L (2020) An artificial intelligence decision support system (AI-DSS) for surgical treatment of hip fractures. Int J Comput Assist Radiol Surg 15(7), 1215–1223. [CrossRef] [PubMed] [Google Scholar]
- Kim J-H, Mo Y-C, Choi S-M, Hyun Y, Lee JW (2021) Detecting ankle fractures in plain radiographs using deep learning with accurately labeled datasets aided by computed tomography: a retrospective observational study. App Sci 11(19), 8791. [CrossRef] [Google Scholar]
- Wu J, Zhang Y, Wu Q, Liu J (2018) Deep learning-based system for detecting fractures of the scaphoid bone on plain radiographs. Comput Methods Programs Biomed 156, 13–23. [CrossRef] [PubMed] [Google Scholar]
- Moon HK, Kim KC, Jeon YS, Kim JW (2021) Development and validation of an artificial intelligence system for classification of proximal humerus fractures. J Shoulder Elbow Surg 30(6), e295–e303. [Google Scholar]
- Gale W, Oakden-Rayner L (2017) Detecting hip fractures with radiologist-level performance using deep neural networks. Available from: https://arxiv.org/abs/1711.06504v1 [accessed 17 November 2017]. [Google Scholar]
- Fu S, Li W, Yao S (2020) Learning deformable 3D fracture models from X-ray images with weak supervision. IEEE Trans Med Imaging 39(11), 3381–3392. [Google Scholar]
- Lakhani P, Sundaram B, Mackey S, Rajpurkar P (2018) Deep learning at chest radiography: Automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology 275(2), 675–681. [Google Scholar]
- Caruana R, Lou Y, Gehrke J, Koch P, Sturm M, Elhadad N (2015) Intelligible models for healthcare: predicting pneumonia risk and hospital 30-day readmission. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining ’15. Sydney, ACM Press, 1721–1730. [CrossRef] [Google Scholar]
- Dunnmon JA, Yi D, Langlotz CP, Lungren MP (2019) Radiologist workflow and perceptions of AI as a second reader in emergency radiology. J Am Coll Radiol 16(11), 1574–1581. [Google Scholar]
- Erickson BJ, Korfiatis P, Kline TL, Akkus Z, Philbrick K, Weston AD (2018) Deep learning in radiology: does one size fit all? J Am Coll Radiol 15(3 Pt B), 521–526. [CrossRef] [PubMed] [Google Scholar]
- Oakden-Rayner L, Carneiro G, Bessen T, Nascimento JC, Bradley AP, Palmer LJ (2017) Precision radiology: Predicting longevity using feature engineering and deep learning methods in a radiomics framework. Sci Rep 7(1), 1648. [CrossRef] [PubMed] [Google Scholar]
- Beter A, Kızkapan TB, Sezer M (2021) Improving conservative treatment rates for distal radius fractures using an artificial intelligence model. J Hand Surg Eur Vol 46(6), 634–640. [Google Scholar]
- The High-Level Expert Group on AI (2019) Ethics guidelines for trustworthy AI. Available from: https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai [accessed 8 April 2019]. [Google Scholar]
- HIPPA (2022) Health Insurance Portability and Accountability Act of 1996 (HIPAA). Available from: https://www.cdc.gov/phlp/publications/topic/hipaa.html#:~:text=health%20insurance%20portability%20and%20accountability%20act%20of%201996%20(hipaa),-print&text=the%20health%20insurance%20portability%20and,The%20patient’s%20consent%20or%20knowledge [accessed 22 June 2022]. [Google Scholar]
- ACM Code 2018 Task Force (2018). ACM Code of Ethics and Professional Conduct. Available from https://www.acm.org/code-of-ethics [accessed 22 June 2022]. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.