Open Access
Review
Issue
SICOT-J
Volume 10, 2024
Article Number 22
Number of page(s) 15
Section Knee
DOI https://doi.org/10.1051/sicotj/2024017
Published online 30 May 2024
  1. Kamath AF, Lee G-C, Sheth NP, et al. (2011) Prospective results of uncemented tantalum monoblock tibia in total knee arthroplasty: Minimum 5-year follow-up in patients younger than 55 years. J Arthroplasty 26, 1390–1395. https://doi.org/10.1016/j.arth.2011.06.030. [CrossRef] [PubMed] [Google Scholar]
  2. Belgian Hip and Knee Arthroplasty Registry – Annual Report (2020). Available at: https://www.ehealth.fgov.be/fr/professionnels-de-la-sante/services/qermidorthopride. [Google Scholar]
  3. Ben-Shlomo Y, Blom A, Boulton C, et al. (2022) The National Joint Registry 19th Annual Report 2022. London, National Joint Registry. PMID: 36516281. [Google Scholar]
  4. Lewis PL, Annette W, Robertsson O, et al. (2022) Impact of patient and prosthesis characteristics on common reasons for total knee replacement revision: A registry study of 36,626 revision cases from Australia, Sweden, and USA. Acta Orthop 623–633. https://doi.org/10.2340/17453674.2022.3512. [CrossRef] [PubMed] [Google Scholar]
  5. Brown ML, Javidan P, Early S, Bugbee W (2022) Evolving etiologies and rates of revision total knee arthroplasty: A 10-year institutional report. Arthroplasty Lond Engl 4, 39. https://doi.org/10.1186/s42836-022-00134-7. [CrossRef] [Google Scholar]
  6. Na B-R, Kwak W-K, Lee N-H, et al. (2022) Trend shift in the cause of revision total knee arthroplasty over 17 years. Clin Orthop Surg 14, e44. https://doi.org/10.4055/cios21106. [CrossRef] [PubMed] [Google Scholar]
  7. Uivaraseanu B, Vesa CM, Tit DM, et al. (2022) Highlighting the advantages and benefits of cementless total knee arthroplasty (review). Exp Ther Med 23, 58. https://doi.org/10.3892/etm.2021.10980. [CrossRef] [PubMed] [Google Scholar]
  8. McCormick BP, Rigor P, Trent SM, et al. (2022) Short-term outcomes following cemented versus cementless robotic-assisted total knee arthroplasty. Cureus 14, e30667. https://doi.org/10.7759/cureus.30667. [PubMed] [Google Scholar]
  9. Carlson BJ, Gerry AS, Hassebrock JD, et al. (2022) Clinical outcomes and survivorship of cementless triathlon total knee arthroplasties: A systematic review. Arthroplasty Lond Engl 4, 25. https://doi.org/10.1186/s42836-022-00124-9. [CrossRef] [Google Scholar]
  10. Kim Y-H, Park J-W, Lim H-M, Park E-S (2014) Cementless and cemented total knee arthroplasty in patients younger than fifty five years. Which is better? Int Orthop 38, 297–303. https://doi.org/10.1007/s00264-013-2243-4. [PubMed] [Google Scholar]
  11. Castellarin G, Bori E, Rapallo L, et al. (2023) Biomechanical analysis of different levels of constraint in TKA during daily activities. Arthroplasty Lond Engl 5, 3. https://doi.org/10.1186/s42836-022-00157-0. [CrossRef] [Google Scholar]
  12. Mikulak SA, Mahoney OM, dela Rosa MA, Schmalzried TP (2001) Loosening and osteolysis with the press-fit condylar posterior-cruciate-substituting total knee replacement. J Bone Joint Surg Am 83, 398–403. https://doi.org/10.2106/00004623-200103000-00012. [CrossRef] [PubMed] [Google Scholar]
  13. Nivbrant NO, Khan RJK, Fick DP, et al. (2020) Cementless versus cemented tibial fixation in posterior stabilized total knee replacement: A randomized trial. J Bone Joint Surg Am 102, 1075–1082. https://doi.org/10.2106/JBJS.19.01010. [CrossRef] [PubMed] [Google Scholar]
  14. Pulido L, Abdel MP, Lewallen DG, et al. (2015) The Mark Coventry Award: Trabecular metal tibial components were durable and reliable in primary total knee arthroplasty: A randomized clinical trial. Clin Orthop 473, 34–42. https://doi.org/10.1007/s11999-014-3585-y. [CrossRef] [PubMed] [Google Scholar]
  15. Mikashima Y, Imamura H, Shirakawa Y, et al. (2022) Modern cementless posterior stabilized mobile-bearing total knee arthroplasty shows comparable clinical and radiographical results to its cemented predecessor at 1-year follow-up. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 30, 3131–3137. https://doi.org/10.1007/s00167-022-07047-7. [CrossRef] [PubMed] [Google Scholar]
  16. Prudhon J-L, Verdier R (2017) Cemented or cementless total knee arthroplasty? – Comparative results of 200 cases at a minimum follow-up of 11 years. SICOT J 3, 70. https://doi.org/10.1051/sicotj/2017046. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  17. Sinicrope BJ, Feher AW, Bhimani SJ, et al. (2019) Increased survivorship of cementless versus cemented TKA in the morbidly obese. A minimum 5-year follow-up. J Arthroplasty 34, 309–314. https://doi.org/10.1016/j.arth.2018.10.016. [CrossRef] [PubMed] [Google Scholar]
  18. Sheridan GA, Garbuz DS, Nazaroff H, et al. (2023) Short-term results of the uncemented triathlon total knee arthroplasty: A large cohort single-centre comparative study. Eur J Orthop Surg Traumatol Orthop Traumatol 33(6), 2325–2330. https://doi.org/10.1007/s00590-022-03422-9. [Google Scholar]
  19. Bagsby DT, Issa K, Smith LS, et al. (2016) Cemented vs cementless total knee arthroplasty in morbidly obese patients. J Arthroplasty 31, 1727–1731. https://doi.org/10.1016/j.arth.2016.01.025. [PubMed] [Google Scholar]
  20. Velasquez Garcia A, Bukowiec LG, Yang L, et al. (2024) Artificial intelligence–based three-dimensional templating for total joint arthroplasty planning: A scoping review. Int Orthop 48, 997–1010. https://doi.org/10.1007/s00264-024-06088-6. [CrossRef] [PubMed] [Google Scholar]
  21. Daffara V, Zambianchi F, Bazzan G, et al. (2023) No difference in clinical outcomes between functionally aligned cruciate-retaining and posterior-stabilized robotic-assisted total knee arthroplasty. Int Orthop 47, 711–717. https://doi.org/10.1007/s00264-023-05693-1. [CrossRef] [PubMed] [Google Scholar]
  22. Ezeokoli EU, John J, Gupta R, et al. (2023) Index surgery and ninety day re-operation cost comparison of robotic-assisted versus manual total knee arthroplasty. Int Orthop 47, 359–364. https://doi.org/10.1007/s00264-022-05674-w. [CrossRef] [PubMed] [Google Scholar]
  23. Jeffrey M, Marchand P, Kouyoumdjian P, Coulomb R (2024) Short-term functional outcomes of robotic-assisted TKA are better with functional alignment compared to adjusted mechanical alignment. SICOT J 10, 2. https://doi.org/10.1051/sicotj/2024002. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  24. Wojtowicz R, Henricson A, Nilsson KG, Crnalic S (2019) Uncemented monoblock trabecular metal posterior stabilized high-flex total knee arthroplasty: Similar pattern of migration to the cruciate-retaining design – A prospective radiostereometric analysis (RSA) and clinical evaluation of 40 patients (49 knees) 60 years or younger with 9 years’ follow-up. Acta Orthop 90, 460–466. https://doi.org/10.1080/17453674.2019.1626097. [CrossRef] [PubMed] [Google Scholar]
  25. Zhang Y, Ahn PB, Fitzpatrick DC, et al. (1999) Interfacial frictional behavior: Cancellous bone, cortical bone, and a novel porous tantalum biomaterial. J Musculoskelet Res 03, 245–251. https://doi.org/10.1142/S0218957799000269. [CrossRef] [Google Scholar]
  26. Zardiackas LD, Parsell DE, Dillon LD, et al. (2001) Structure, metallurgy, and mechanical properties of a porous tantalum foam. J Biomed Mater Res 58, 180–187. https://doi.org/10.1002/1097-4636(2001)58:2<180::aid-jbm1005>3.0.co;2-5. [CrossRef] [PubMed] [Google Scholar]
  27. Levine BR, Sporer S, Poggie RA, et al. (2006) Experimental and clinical performance of porous tantalum in orthopedic surgery. Biomaterials 27, 4671–4681. https://doi.org/10.1016/j.biomaterials.2006.04.041. [CrossRef] [PubMed] [Google Scholar]
  28. Sagomonyants KB, Hakim-Zargar M, Jhaveri A, et al. (2011) Porous tantalum stimulates the proliferation and osteogenesis of osteoblasts from elderly female patients. J Orthop Res Off Publ Orthop Res Soc 29, 609–616. https://doi.org/10.1002/jor.21251. [CrossRef] [PubMed] [Google Scholar]
  29. Minoda Y, Kobayashi A, Ikebuchi M, et al. (2013) Porous tantalum tibial component prevents periprosthetic loss of bone mineral density after total knee arthroplasty for five years-a matched cohort study. J Arthroplasty 28, 1760–1764.https://doi.org/10.1016/j.arth.2013.03.031. [CrossRef] [PubMed] [Google Scholar]
  30. Mosich GM, Potter HG, Koff MF, et al. (2022) Multiacquisition variable-resonance image combination magnetic resonance imaging to study detailed bone apposition and fixation of cementless knee system compared to cemented total knee replacements. Arthroplast. Today 17, 126–131. https://doi.org/10.1016/j.artd.2022.06.013. [CrossRef] [Google Scholar]
  31. Goh GS, Fillingham YA, Sutton RM, et al. (2022) Cemented versus cementless total knee arthroplasty in obese patients with body mass index ≥35 kg/m2: A contemporary analysis of 812 patients. J Arthroplasty 37, 688–693.e1. https://doi.org/10.1016/j.arth.2021.12.038. [CrossRef] [PubMed] [Google Scholar]
  32. Miller AJ, Stimac JD, Smith LS, et al. (2018) Results of cemented vs cementless primary total knee arthroplasty using the same implant design. J Arthroplasty 33, 1089–1093. https://doi.org/10.1016/j.arth.2017.11.048. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.