Open Access
Review
Issue
SICOT-J
Volume 10, 2024
Article Number 38
Number of page(s) 12
Section Lower Limb
DOI https://doi.org/10.1051/sicotj/2024033
Published online 04 October 2024
  1. Futani H, Minamizaki T, Nishimoto Y, et al. (2006) Long-term follow-up after limb salvage in skeletally immature children with a primary malignant tumor of the distal end of the femur. J Bone Joint Surg Am 88, 595–603.https://doi.org/10.2106/JBJS.C.01686. [PubMed] [Google Scholar]
  2. Aponte-Tinao LA, Albergo JI, Ayerza MA, et al. (2018) What are the complications of allograft reconstructions for sarcoma resection in children younger than 10 years at long-term followup? Clin Orthop Relat Res 476, 548–555. https://doi.org/10.1007/s11999.0000000000000055. [CrossRef] [PubMed] [Google Scholar]
  3. Errani C, Ceruso M, Donati DM, Manfrini M (2019) Microsurgical reconstruction with vascularized fibula and massive bone allograft for bone tumors. Eur J Orthop Surg Traumatol 29, 307–311. https://doi.org/10.1007/s00590-018-2360-2. [CrossRef] [PubMed] [Google Scholar]
  4. Errani C, Alfaro PA, Ponz V, et al. (2021) Does the addition of a vascularized fibula improve the results of a massive bone allograft alone for intercalary femur reconstruction of malignant bone tumors in children? Clin Orthop Relat Res 479, 1296–1308. https://doi.org/10.1097/CORR.0000000000001639. [CrossRef] [PubMed] [Google Scholar]
  5. Groundland JS, Ambler SB, Houskamp LDJ, et al. (2016) Surgical and functional outcomes after limb-preservation surgery for tumor in pediatric patients: a systematic review. JBJS Rev 4(2), e2. https://doi.org/10.2106/JBJS.RVW.O.00013. [CrossRef] [PubMed] [Google Scholar]
  6. Ahlmann ER, Menendez LR (2006) Intercalary endoprosthetic reconstruction for diaphyseal bone tumours. J Bone Joint Surg Br 88, 1487–1491. https://doi.org/10.1302/0301-620X.88B11.18038. [CrossRef] [Google Scholar]
  7. Aponte-Tinao L, Farfalli GL, Ritacco LE, et al. (2012) Intercalary femur allografts are an acceptable alternative after tumor resection. Clin Orthop Relat Res 470, 728–734. https://doi.org/10.1007/s11999-011-1952-5. [CrossRef] [PubMed] [Google Scholar]
  8. Lu Y, Xiao X, Li M, et al. (2021) Use of vascularized fibular epiphyseal transfer with massive bone allograft for proximal humeral reconstruction in children with bone sarcoma. Ann Surg Oncol 28, 7834–7841. https://doi.org/10.1245/s10434-021-10032-y. [CrossRef] [PubMed] [Google Scholar]
  9. Abed R, Grimer R (2010) Surgical modalities in the treatment of bone sarcoma in children. Cancer Treat Rev 36, 342–347. https://doi.org/10.1016/j.ctrv.2010.02.010. [CrossRef] [PubMed] [Google Scholar]
  10. Errani C, Aiba H, Atherley A, et al. (2024) What is the revision-free survival of resurfaced allograft-prosthesis composites for proximal humerus reconstruction in children with bone tumors? Clin Orthop Relat Res 482(6), 979–990. https://doi.org/10.1097/CORR.0000000000002969. [CrossRef] [PubMed] [Google Scholar]
  11. Errani C, Tanzi P, Ferra L, et al. (2021) Resurfaced allograft-prosthetic composite for distal femur reconstruction in children with bone tumor. Eur J Orthop Surg Traumatol 31, 1577–1582. https://doi.org/10.1007/s00590-021-02995-1. [CrossRef] [PubMed] [Google Scholar]
  12. Abudu A, Grimer R, Tillman R, Carter S (2006) The use of prostheses in skeletally immature patients. Orthop Clin North Am 37, 75–84. https://doi.org/10.1016/j.ocl.2005.08.008. [CrossRef] [PubMed] [Google Scholar]
  13. Albergo JI, Gaston LC, Farfalli GL, et al. (2020) Failure rates and functional results for intercalary femur recontructions after tumour resection. Musculoskelet Surg 104(1), 59–65. https://doi.org/10.1007/s12306-019-00595-1. [CrossRef] [PubMed] [Google Scholar]
  14. Aldlyami E, Abudu A, Grimer RJ, et al. (2005) Endoprosthetic replacement of diaphyseal bone defects. Long-term results. Int Orthop 29, 25–29. https://doi.org/10.1007/s00264-004-0614-6. [CrossRef] [PubMed] [Google Scholar]
  15. Manfrini M, Bindiganavile S, Say F, et al. (2017) Is there benefit to free over pedicled vascularized grafts in augmenting tibial intercalary allograft constructs? Clin Orthop Relat Res 475, 1322–1337. https://doi.org/10.1007/s11999-016-5196-2. [CrossRef] [PubMed] [Google Scholar]
  16. Hanna SA, Sewell MD, Aston WJS, et al. (2010) Femoral diaphyseal endoprosthetic reconstruction after segmental resection of primary bone tumours. J Bone Joint Surg Br 92, 867–874. https://doi.org/10.1302/0301-620X.92B6.23449. [CrossRef] [Google Scholar]
  17. Houdek MT, Wagner ER, Stans AA, et al. (2016) What is the outcome of allograft and intramedullary free fibula (Capanna technique) in pediatric and adolescent patients with bone tumors? Clin Orthop Relat Res 474, 660–668. https://doi.org/10.1007/s11999-015-4204-2. [CrossRef] [PubMed] [Google Scholar]
  18. Krieg AH, Davidson AW, Stalley PD (2007) Intercalary femoral reconstruction with extracorporeal irradiated autogenous bone graft in limb-salvage surgery. J Bone Joint Surg Br 89, 366–371. https://doi.org/10.1302/0301-620X.89B3.18508. [CrossRef] [Google Scholar]
  19. Lesensky J, Prince DE (2017) Distraction osteogenesis reconstruction of large segmental bone defects after primary tumor resection: pitfalls and benefits. Eur J Orthop Surg Traumatol 27, 715–727. https://doi.org/10.1007/s00590-017-1998-5. [CrossRef] [PubMed] [Google Scholar]
  20. Lun D-X, Hu Y-C, Yang X-G, et al. (2018) Short-term outcomes of reconstruction subsequent to intercalary resection of femoral diaphyseal metastatic tumor with pathological fracture: comparison between segmental allograft and intercalary prosthesis. Oncol Lett 15, 3508–3517. https://doi.org/10.3892/ol.2018.7804. [PubMed] [Google Scholar]
  21. Manfrini M, Tiwari A, Ham J, et al. (2011) Evolution of surgical treatment for sarcomas of proximal humerus in children: retrospective review at a single institute over 30 years. J Pediatr Orthop 31, 56–64. https://doi.org/10.1097/BPO.0b013e318202c223. [CrossRef] [PubMed] [Google Scholar]
  22. Aponte-Tinao LA, Ayerza MA, Albergo JI, Farfalli GL (2020) Do massive allograft reconstructions for tumors of the femur and tibia survive 10 or more years after implantation? Clin Orthop Relat Res 478, 517–524. https://doi.org/10.1097/CORR.0000000000000806. [CrossRef] [PubMed] [Google Scholar]
  23. Zekry KM, Yamamoto N, Hayashi K, et al. (2017) Intercalary frozen autograft for reconstruction of malignant bone and soft tissue tumours. Int Orthop (SICOT) 41, 1481–1487. https://doi.org/10.1007/s00264-017-3446-x. [CrossRef] [PubMed] [Google Scholar]
  24. Takata M, Sugimoto N, Yamamoto N, et al. (2011) Activity of bone morphogenetic protein-7 after treatment at various temperatures: freezing vs. pasteurization vs. allograft. Cryobiology 63, 235–239. https://doi.org/10.1016/j.cryobiol.2011.09.001. [CrossRef] [PubMed] [Google Scholar]
  25. Yamamoto N, Tsuchiya H, Nojima T, et al. (2003) Histological and radiological analysis of autoclaved bone 2 years after extirpation. J Orthop Sci 8, 16–19. https://doi.org/10.1007/s007760300002. [CrossRef] [PubMed] [Google Scholar]
  26. Han I, Kim JH, Cho H-S, Kim H-S (2014) Low-heat treated autograft versus allograft for intercalary reconstruction of malignant bone tumors. J Surg Oncol 110, 823–827. https://doi.org/10.1002/jso.23727. [CrossRef] [PubMed] [Google Scholar]
  27. Lu Y, Zhu H, Huang M, et al. (2020) Is frozen tumour-bearing autograft with concurrent vascularized fibula an alternative to the Capanna technique for the intercalary reconstruction after resection of osteosarcoma in the lower limb? Bone Joint J 102-B, 646–652. https://doi.org/10.1302/0301-620X.102B5.BJJ-2019-1380.R1. [CrossRef] [PubMed] [Google Scholar]
  28. Errani C, Tsukamoto S, Almunhaisen N, et al. (2021) Intercalary reconstruction following resection of diaphyseal bone tumors: a systematic review. J Clin Orthop Trauma 19, 1–10. https://doi.org/10.1016/j.jcot.2021.04.033. [CrossRef] [PubMed] [Google Scholar]
  29. Rabitsch K, Maurer-Ertl W, Pirker-Frühauf U, et al. (2013) Intercalary reconstructions with vascularised fibula and allograft after tumour resection in the lower limb. Sarcoma 2013, 160295. https://doi.org/10.1155/2013/160295. [PubMed] [Google Scholar]
  30. Muscolo DL, Ayerza MA, Aponte-Tinao L, et al. (2004) Intercalary femur and tibia segmental allografts provide an acceptable alternative in reconstructing tumor resections. Clin Orthop Relat Res 426, 97–102. https://doi.org/10.1097/01.blo.0000141652.93178.10. [CrossRef] [Google Scholar]
  31. Deijkers RLM, Bloem RM, Kroon HM, et al. (2005) Epidiaphyseal versus other intercalary allografts for tumors of the lower limb. Clin Orthop Relat Res 439, 151–160. https://doi.org/10.1097/00003086-200510000-00029. [CrossRef] [PubMed] [Google Scholar]
  32. Houdek MT, Rose PS, Milbrandt TA, et al. (2018) Comparison of pediatric intercalary allograft reconstructions with and without a free vascularized fibula. Plast Reconstr Surg 142, 1065–1071. https://doi.org/10.1097/PRS.0000000000004794. [CrossRef] [PubMed] [Google Scholar]
  33. Valente G, Taddei F, Roncari A, et al. (2017) Bone adaptation of a biologically reconstructed femur after Ewing sarcoma: long-term morphological and densitometric evolution. Skeletal Radiol 46, 1271–1276. https://doi.org/10.1007/s00256-017-2661-2. [CrossRef] [PubMed] [Google Scholar]
  34. Bus MPA, Dijkstra PDS, van de Sande MAJ, et al. (2014) Intercalary allograft reconstructions following resection of primary bone tumors: a nationwide multicenter study. J Bone Joint Surg Am 96, e26. https://doi.org/10.2106/JBJS.M.00655. [CrossRef] [PubMed] [Google Scholar]
  35. Frisoni T, Cevolani L, Giorgini A, et al. (2012) Factors affecting outcome of massive intercalary bone allografts in the treatment of tumours of the femur. J Bone Joint Surg Br 94, 836–841. https://doi.org/10.1302/0301-620X.94B6.28680. [CrossRef] [Google Scholar]
  36. Campanacci DA, Totti F, Puccini S, et al. (2018) Intercalary reconstruction of femur after tumour resection: is a vascularized fibular autograft plus allograft a long-lasting solution? Bone Joint J 100-B, 378–386. https://doi.org/10.1302/0301-620X.100B3.BJJ-2017-0283.R2. [CrossRef] [PubMed] [Google Scholar]
  37. Campanacci DA, Puccini S, Caff G, et al. (2014) Vascularised fibular grafts as a salvage procedure in failed intercalary reconstructions after bone tumour resection of the femur. Injury 45, 399–404. https://doi.org/10.1016/j.injury.2013.10.012. [CrossRef] [PubMed] [Google Scholar]
  38. Li J, Wang Z, Guo Z, et al. (2010) The use of allograft shell with intramedullary vascularized fibula graft for intercalary reconstruction after diaphyseal resection for lower extremity bony malignancy. J Surg Oncol 102, 368–374. https://doi.org/10.1002/jso.21620. [CrossRef] [PubMed] [Google Scholar]
  39. Weichman KE, Dec W, Morris CD, et al. (2015) Lower extremity osseous oncologic reconstruction with composite microsurgical free fibula inside massive bony allograft. Plast Reconstr Surg 136, 396–403. https://doi.org/10.1097/PRS.0000000000001463. [CrossRef] [PubMed] [Google Scholar]
  40. Groundland JS, Binitie O (2016) Reconstruction after tumor resection in the growing child. Orthop Clin North Am 47, 265–281. https://doi.org/10.1016/j.ocl.2015.08.027. [CrossRef] [PubMed] [Google Scholar]
  41. Aponte-Tinao LA, Ayerza MA, Muscolo DL, Farfalli GL (2013) Allograft reconstruction for the treatment of musculoskeletal tumors of the upper extremity. Sarcoma 2013, 925413. https://doi.org/10.1155/2013/925413. [PubMed] [Google Scholar]
  42. Dukan R, Mascard E, Langlais T, et al. (2022) Long-term outcomes of non-invasive expandable endoprostheses for primary malignant tumors around the knee in skeletally-immature patients. Arch Orthop Trauma Surg 142, 927–936. https://doi.org/10.1007/s00402-020-03712-z. [CrossRef] [PubMed] [Google Scholar]
  43. Torner F, Segur JM, Ullot R, et al. (2016) Non-invasive expandable prosthesis in musculoskeletal oncology paediatric patients for the distal and proximal femur First results. Int Orthop 40, 1683–1688. https://doi.org/10.1007/s00264-016-3163-x. [CrossRef] [PubMed] [Google Scholar]
  44. Cipriano CA, Gruzinova IS, Frank RM, et al. (2015) Frequent complications and severe bone loss associated with the repiphysis expandable distal femoral prosthesis. Clin Orthop Relat Res 473, 831–838. https://doi.org/10.1007/s11999-014-3564-3. [CrossRef] [PubMed] [Google Scholar]
  45. San-Julian M, Dölz R, Garcia-Barrecheguren E, et al. (2003) Limb salvage in bone sarcomas in patients younger than age 10: a 20-year experience. J Pediatr Orthop 23, 753–762. https://doi.org/10.1097/00004694-200311000-00013. [CrossRef] [PubMed] [Google Scholar]
  46. Ness KK, Neel MD, Kaste SC, et al. (2014) A comparison of function after limb salvage with non-invasive expandable or modular prostheses in children. Eur J Cancer 50, 3212–3220. https://doi.org/10.1016/j.ejca.2014.10.005. [CrossRef] [PubMed] [Google Scholar]
  47. Neel MD, Heck R, Britton L, et al. (2004) Use of a smooth press-fit stem preserves physeal growth after tumor resection. Clin Orthop Relat Res 426, 125–128. https://doi.org/10.1097/01.blo.0000141386.97866.bb. [CrossRef] [Google Scholar]
  48. Arteau A, Lewis VO, Moon BS, et al. (2015) Tibial growth disturbance following distal femoral resection and expandable endoprosthetic reconstruction. J Bone Joint Surg Am 97, e72. https://doi.org/10.2106/JBJS.O.00060. [CrossRef] [PubMed] [Google Scholar]
  49. El Ghoneimy AM, Shehab AM, Farid N (2022) What is the cumulative incidence of revision surgery and what are the complications associated with stemmed cementless nonextendable endoprostheses in patients 18 years or younger with primary bone sarcomas about the knee. Clin Orthop Relat Res 480, 1329–1338. https://doi.org/10.1097/CORR.0000000000002150. [CrossRef] [PubMed] [Google Scholar]
  50. Kim W, Han I, Cho H-S, et al. (2018) Cortical atrophy related to tumor prosthesis in skeletally immature osteosarcoma patients. J Pediatr Orthop 38, 60–68. https://doi.org/10.1097/BPO.0000000000000718. [CrossRef] [PubMed] [Google Scholar]
  51. Campanacci L, Alì N, Casanova JMPS, et al. (2015) Resurfaced allograft-prosthetic composite for proximal tibial reconstruction in children: intermediate-term results of an original technique. J Bone Joint Surg Am 97, 241–250. https://doi.org/10.2106/JBJS.N.00447. [CrossRef] [PubMed] [Google Scholar]
  52. Manfrini M, Donati D, Colangeli M, Campanacci L (2016) Resurfaced allograft-prosthetic composite for proximal tibial reconstruction in children. JBJS Essent Surg Tech 6, e4. https://doi.org/10.2106/JBJS.ST.15.00010. [CrossRef] [PubMed] [Google Scholar]
  53. Campanacci L, Manfrini M, Colangeli M, et al. (2010) Long-term results in children with massive bone osteoarticular allografts of the knee for high-grade osteosarcoma. J Pediatr Orthop 30, 919–927. https://doi.org/10.1097/BPO.0b013e3181fa7981. [CrossRef] [PubMed] [Google Scholar]
  54. Campanacci L, Cevolani L, Focaccia M, et al. (2023) Lengthening patients previously treated for massive lower limb reconstruction for bone tumors with the PRECICE 2 nail. Children 10, 1772. https://doi.org/10.3390/children10111772. [CrossRef] [PubMed] [Google Scholar]
  55. Levin AS, Arkader A, Morris CD (2017) Reconstruction following tumor resections in skeletally immature patients. J Am Acad Orthop Surg 25, 204–213. https://doi.org/10.5435/JAAOS-D-15-00619. [CrossRef] [PubMed] [Google Scholar]
  56. van Kampen M, Grimer RJ, Carter SR, et al. (2008) Replacement of the hip in children with a tumor in the proximal part of the femur. J Bone Joint Surg Am 90, 785–795. https://doi.org/10.2106/JBJS.F.01182. [CrossRef] [PubMed] [Google Scholar]
  57. Manfrini M, Innocenti M, Ceruso M, Mercuri M (2003) Original biological reconstruction of the hip in a 4-year-old girl. Lancet 361, 140–142. https://doi.org/10.1016/S0140-6736(03)12192-7. [CrossRef] [PubMed] [Google Scholar]
  58. Winkelmann WW (2000) Type-B-IIIa hip rotationplasty: an alternative operation for the treatment of malignant tumors of the femur in early childhood. J Bone Joint Surg Am 82, 814–828. https://doi.org/10.2106/00004623-200006000-00008. [CrossRef] [PubMed] [Google Scholar]
  59. Thambapillary S, Dimitriou R, Makridis KG, et al. (2013) Implant longevity, complications and functional outcome following proximal femoral arthroplasty for musculoskeletal tumors: a systematic review. J Arthroplasty 28, 1381–1385. https://doi.org/10.1016/j.arth.2012.10.024. [CrossRef] [PubMed] [Google Scholar]
  60. Atherley O’Meally A, Cosentino M, Aiba H, et al. (2024) Similar complications, implant survival, and function following modular prosthesis and allograft-prosthesis composite reconstructions of the proximal femur for primary bone tumors: a systematic review and meta-analysis. Eur J Orthop Surg Traumatol 34(3), 1581–1595. https://doi.org/10.1007/s00590-024-03846-5. [CrossRef] [PubMed] [Google Scholar]
  61. Janssen SJ, Langerhuizen DWG, Schwab JH, Bramer JAM (2019) Outcome after reconstruction of proximal femoral tumors: a systematic review. J Surg Oncol 119, 120–129. https://doi.org/10.1002/jso.25297. [CrossRef] [PubMed] [Google Scholar]
  62. Teunis T, Nota SPFT, Hornicek FJ, et al. (2014) Outcome after reconstruction of the proximal humerus for tumor resection: a systematic review. Clin Orthop Relat Res 472, 2245–2253. https://doi.org/10.1007/s11999-014-3474-4. [CrossRef] [PubMed] [Google Scholar]
  63. Tsuda Y, Fujiwara T, Stevenson JD, et al. (2020) The long-term results of extendable endoprostheses of the humerus in children after the resection of a bone sarcoma. Bone Joint J 102-B, 64–71. https://doi.org/10.1302/0301-620X.102B12.BJJ-2020-0124.R164. [CrossRef] [PubMed] [Google Scholar]
  64. Wafa H, Reddy K, Grimer R, et al. (2015) Does total humeral endoprosthetic replacement provide reliable reconstruction with preservation of a useful extremity? Clin Orthop Relat Res 473, 917–925. https://doi.org/10.1007/s11999-014-3635-5. [CrossRef] [PubMed] [Google Scholar]
  65. Innocenti M, Ceruso M, Manfrini M, et al. (1998) Free vascularized growth-plate transfer after bone tumor resection in children. J Reconstr Microsurg 14, 137–143. https://doi.org/10.1055/s-2007-1000157. [CrossRef] [PubMed] [Google Scholar]
  66. Innocenti M, Delcroix L, Romano GF (2005) Epiphyseal transplant: harvesting technique of the proximal fibula based on the anterior tibial artery. Microsurgery 25, 284–292. https://doi.org/10.1002/micr.20130. [CrossRef] [PubMed] [Google Scholar]
  67. Innocenti M, Delcroix L, Romano GF, Capanna R (2007) Vascularized epiphyseal transplant. Orthop Clin North Am 38, 95–101. https://doi.org/10.1016/j.ocl.2006.10.003. [CrossRef] [PubMed] [Google Scholar]
  68. Zelenski N, Brigman BE, Levin LS, et al. (2013) The vascularized fibular graft in the pediatric upper extremity: a durable, biological solution to large oncologic defects. Sarcoma 2013, 321201. https://doi.org/10.1155/2013/321201. [CrossRef] [Google Scholar]
  69. Nota S, Teunis T, Kortlever J, et al. (2018) Functional outcomes and complications after oncologic reconstruction of the proximal humerus. J Am Acad Orthop Surg 26, 403–409. https://doi.org/10.5435/JAAOS-D-16-00551. [CrossRef] [PubMed] [Google Scholar]
  70. Barbier D, De Billy B, Gicquel P, et al. (2017) Is the clavicula pro humero technique of value for reconstruction after resection of the proximal humerus in children? Clin Orthop Relat Res 475, 2550–2561. https://doi.org/10.1007/s11999-017-5438-y. [CrossRef] [PubMed] [Google Scholar]
  71. Calvert GT, Wright J, Agarwal J, et al. (2015) Is claviculo pro humeri of value for limb salvage of pediatric proximal humerus sarcomas? Clin Orthop Relat Res 473, 877–882. https://doi.org/10.1007/s11999-014-3814-4. [CrossRef] [PubMed] [Google Scholar]
  72. Ejiri S, Tajino T, Kawakami R, et al. (2015) Long-term follow-up of free vascularized fibular head graft for reconstruction of the proximal humerus after wide resection for bone sarcoma. Fukushima J Med Sci 61, 58–65. https://doi.org/10.5387/fms.2015-3. [CrossRef] [PubMed] [Google Scholar]
  73. Stevenson JD, Doxey R, Abudu A, et al. (2018) Vascularized fibular epiphyseal transfer for proximal humeral reconstruction in children with a primary sarcoma of bone. Bone Joint J 100-B, 535–541. https://doi.org/10.1302/0301-620X.100B4.BJJ-2017-0830.R1. [CrossRef] [PubMed] [Google Scholar]
  74. Tsukushi S, Nishida Y, Takahashi M, Ishiguro N (2006) Clavicula pro humero reconstruction after wide resection of the proximal humerus. Clin Orthop Relat Res 447, 132–137. https://doi.org/10.1097/01.blo.0000201169.80011.ff. [CrossRef] [PubMed] [Google Scholar]
  75. Kinoshita H, Kamoda H, Hagiwara Y, et al. (2022) Clavicula pro humero reconstruction for malignant tumor of the proximal humerus in children and adults. Anticancer Res 42, 2139–2144. https://doi.org/10.21873/anticanres.15696. [CrossRef] [PubMed] [Google Scholar]
  76. Abdeen A, Hoang BH, Athanasian EA, et al. (2009) Allograft-prosthesis composite reconstruction of the proximal part of the humerus: functional outcome and survivorship. J Bone Joint Surg Am 91, 2406–2415. https://doi.org/10.2106/JBJS.H.00815. [CrossRef] [PubMed] [Google Scholar]
  77. Moran M, Stalley PD (2009) Reconstruction of the proximal humerus with a composite of extracorporeally irradiated bone and endoprosthesis following excision of high grade primary bone sarcomas. Arch Orthop Trauma Surg 129, 1339–1345. https://doi.org/10.1007/s00402-008-0752-1. [CrossRef] [PubMed] [Google Scholar]
  78. Nota S, Teunis T, Kortlever J, et al. (2018) Functional outcomes and complications after oncologic reconstruction of the proximal humerus. J Am Acad Orthop Surg 26, 403–409. https://doi.org/10.5435/JAAOS-D-16-00551. [CrossRef] [PubMed] [Google Scholar]
  79. Capanna R, Campanacci DA, Belot N, et al. (2007) A new reconstructive technique for intercalary defects of long bones: the association of massive allograft with vascularized fibular autograft. Long-term results and comparison with alternative techniques. Orthop Clin North Am 38, 51–60. https://doi.org/10.1016/j.ocl.2006.10.008. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.