Volume 7, 2021
Special Issue: "SICOT Education Academy Collection" Guest Editor: H. Said
Article Number 26
Number of page(s) 10
Section Hip
Published online 12 April 2021
  1. Wiles P (1958) The surgery of the osteoarthritic hip. Br J Surg 45, 488–497. [Google Scholar]
  2. Learmonth ID, Young C, Rorabeck C (2007) The operation of the century: total hip replacement. Lancet 370, 1508–1519. [Google Scholar]
  3. Rivière C, Harman C, Logishetty K, Van Der Straeten C (2020) Hip replacement: Its development and future. In: Personalized Hip and Knee Joint Replacement. Rivière C, Vendittoli P-A. Springer International Publishing, pp. 23–32. [Google Scholar]
  4. Heckmann N, Weitzman DS, Jaffri H, Berry DJ, Springer BD, Lieberman JR (2020) Trends in the use of dual mobility bearings in hip arthroplasty. Bone Jt J 102-B, 27–32. [Google Scholar]
  5. Khoshbin A, Haddad FS, Ward S, O hEireamhoin S, Wu J, Nherera L, Atrey A (2020) A cost-effectiveness assessment of dual-mobility bearings in revision hip arthroplasty. Bone Jt J 102-B, 1128–1135. [Google Scholar]
  6. Epinette JA, Lafuma A, Robert J, Doz M (2016) Cost-effectiveness model comparing dual-mobility to fixed-bearing designs for total hip replacement in France. Orthop Traumatol Surg Res 102, 143–148. [Google Scholar]
  7. Haddad FS, Plastow R (2020) Is it time to revisit cementless total knee arthroplasty? Bone Jt J 102, 965–966. [Google Scholar]
  8. Kayani B, Konan S, Thakrar RR, Huq SS, Haddad FS (2019) Assuring the long-term total joint arthroplasty: A triad of variables. Bone Jt J 101B, 11–18. [Google Scholar]
  9. Hayashi S, Naito M, Kawata S, Qu N, Hatayama N, Hirai S, Itoh M (2016) History and future of human cadaver preservation for surgical training: from formalin to saturated salt solution method. Anat Sci Int 91, 1–7. [Google Scholar]
  10. Benninger B, Maier T (2015) Using ATP-driven bioluminescence assay to monitor microbial safety in a contemporary human cadaver laboratory. Clin Anat 28, 164–167. [Google Scholar]
  11. Bartlett JD, Lawrence JE, Stewart ME, Nakano N, Khanduja V (2018) Does virtual reality simulation have a role in training trauma and orthopaedic surgeons? Bone Jt J 100B, 559–565. [Google Scholar]
  12. Logishetty K, Rudran B, Cobb JP (2019) Virtual reality training improves trainee performance in total hip arthroplasty: A randomized controlled trial. Bone Jt J 101-B, 1585–1592. [Google Scholar]
  13. Laverdière C, Corban J, Khoury J, Ge SM, Schupbach J, Harvey EJ, Reindl R, Martineau PA (2019) Augmented reality in orthopaedics: A systematic review and a window on future possibilities. Bone Jt J 101-B, 1479–1488. [Google Scholar]
  14. Lohre R, Bois AJ, Pollock JW, Lapner P, McIlquham K, Athwal GS, Goel DP (2020) Effectiveness of immersive virtual reality on orthopedic surgical skills and knowledge acquisition among senior surgical residents. JAMA Netw Open 3, e2031217. [Google Scholar]
  15. Fitts P, Posner M (1967) Human performance. Belmont, CA. Brooks/Cole Pub. Co. [Google Scholar]
  16. Taylor JA, Ivry RB (2012) The role of strategies in motor learning. Ann N Y Acad Sci 1251, 1–12. [Google Scholar]
  17. Sirimanna P, Gladman MA (2017) Development of a proficiency-based virtual reality simulation training curriculum for laparoscopic appendicectomy. ANZ J Surg 87, 760–766. [Google Scholar]
  18. Bartlett JD, Lawrence JE, Stewart ME, Nakano N, Khanduja V (2018) Does virtual reality simulation have a role in training trauma and orthopaedic surgeons? Bone Jt J 100B, 559–565. [Google Scholar]
  19. Levesque JN, Shah A, Ekhtiari S, Yan JR, Thornley P, Williams DS (2020) Three-dimensional printing in orthopaedic surgery: A scoping review. EFORT Open Rev 5, 430–441. [Google Scholar]
  20. Zhakeyev A, Wang P, Zhang L, Shu W, Wang H, Xuan J (2017) Additive manufacturing: unlocking the evolution of energy materials. Adv Sci 4, 1700187. [Google Scholar]
  21. Hooper J, Schwarzkopf R, Fernandez E, Buckland A, Werner J, Einhorn T, Walker PS (2019) Feasibility of single-use 3D-printed instruments for total knee arthroplasty. Bone Jt J 101-B, 115–120. [Google Scholar]
  22. Tanzer M, Chuang PJ, Ngo CG, Song L, TenHuisen KS (2019) Characterization of bone ingrowth and interface mechanics of a new porous 3D printed biomaterial. Bone Jt J 101-B, 62–67. [Google Scholar]
  23. Sporer S, MacLean L, Burger A, Moric M (2019) Evaluation of a 3D-printed total knee arthroplasty using radiostereometric analysis. Bone Jt J 101-B, 40–47. [Google Scholar]
  24. Hasan S, Hamersveld KTV, Vande Mheen PJM, Kaptein BL, Nelissen RGHH, Toksvig-Larsen S (2020) Migration of a novel 3D-printed cementless versus a cemented total knee arthroplasty: Two-year results of a randomized controlled trial using radiostereometric analysis. Bone Jt J 102, 1016–1024. [Google Scholar]
  25. McDonnell JM, Ahern DP, O’Doinn T, Gibbons D, Rodrigues KN, Birch N, Butler JS (2020) Surgeon proficiency in robot-assisted spine surgery a narrative review. Bone Jt J 102, 568–572. [Google Scholar]
  26. Vermue H, Lambrechts J, Tampere T, Arnout N, Auvinet E, Victor J. 2020. How should we evaluate robotics in the operating theatre? Bone Jt J 102 B, 407–413. [Google Scholar]
  27. Robinson PG, Clement ND, Hamilton D, Patton JT, Blyth MJG, Haddad FS (2019) A systematic review of robotic-assisted unicompartmental knee arthroplasty: Prosthesis design and type should be reported. Bone Jt J 101 B, 838–847. [Google Scholar]
  28. Laende EK, Richardson CG, Dunbar MJ (2019) A randomized controlled trial of tibial component migration with kinematic alignment using patient-specific instrumentation versus mechanical alignment using computer-assisted surgery in total knee arthroplasty. Bone Jt J 101 B, 929–940. [Google Scholar]
  29. Oussedik S, Abdel MP, Victor J, Pagnano MW, Haddad FS (2020) Alignment in total knee arthroplasty. Bone Jt J 102 B, 276–279. [Google Scholar]
  30. Kayani B, Konan S, Huq SS, Ibrahim MS, Ayuob A, Haddad FS (2019) The learning curve of robotic-arm assisted acetabular cup positioning during total hip arthroplasty. HIP Int. [Google Scholar]
  31. Banger MS, Johnston WD, Razii N, Doonan J, Rowe PJ, Jones BG, MacLean AD, Blyth MJG (2020) Robotic arm-assisted bi-unicompartmental knee arthroplasty maintains natural knee joint anatomy compared with total knee arthroplasty: A prospective randomized controlled trial. Bone Jt J 102 B, 1511–1518. [Google Scholar]
  32. Kayani B, Konan S, Ayuob A, Ayyad S, Haddad FS (2019) The current role of robotics in total hip arthroplasty. EFORT Open Rev 4, 618–625. [Google Scholar]
  33. Abdelfadeel W, Houston N, Star A, Saxena A, Hozack WJ (2020) CT planning studies for robotic total knee arthroplasty what does it cost and does it require a formal radiologist reporting? Bone Jt J 102, 79–84. [Google Scholar]
  34. Haddad FS, Horriat S (2019) Robotic and other enhanced technologies: Are we prepared for such innovation? Bone Jt J 101-B, 1469–1471. [Google Scholar]
  35. Nawabi DH, Conditt MA, Ranawat AS, Dunbar NJ, Jones J, Banks S, Padgett DE (2013) Haptically guided robotic technology in total hip arthroplasty: A cadaveric investigation. Proc Inst Mech Eng Part H J Eng Med 227, 302–309. [Google Scholar]
  36. Zambianchi F, Franceschi G, Rivi E, Banchelli F, Marcovigi A, Nardacchione R, Ensini A, Catani F (2019) Does component placement affect short-term clinical outcome in robotic-arm assisted unicompartmental knee arthroplasty? Bone Jt J 101 B, 435–442. [Google Scholar]
  37. Kayani B, Konan S, Tahmassebi J, Rowan FE, Haddad FS (2019) An assessment of early functional rehabilitation and hospital discharge in conventional versus robotic-arm assisted unicompartmental knee arthroplasty. Bone Jt J 101B, 24–33. [Google Scholar]
  38. Kayani B, Konan S, Pietrzak JRT, Tahmassebi J, Haddad FS (2018) Robotic-arm assisted total knee arthroplasty is associated with improved early functional recovery and reduced time to hospital discharge compared with conventional jig-based total knee arthroplasty. Bone Jt J 100B, 930–937. [Google Scholar]
  39. Kayani B, Konan S, Horriat S, Ibrahim MS, Haddad FS (2019) Posterior cruciate ligament resection in total knee arthroplasty: The effect on flexion-extension gaps, mediolateral laxity, and fixed flexion deformity. Bone Jt J 101-B, 1230–1237. [Google Scholar]
  40. Kayani B, Tahmassebi J, Ayuob A, Konan S, Oussedik S, Haddad FS (2021) A prospective randomized controlled trial comparing the systemic inflammatory response in conventional jig-based total knee arthroplasty versus robotic-arm assisted total knee arthroplasty. Bone Jt J 103-B, 113–122. [Google Scholar]
  41. St Mart JP, De Steiger RN, Cuthbert A, Donnelly W (2020) The three-year survivorship of robotically assisted versus non-robotically assisted unicompartmental knee arthroplasty. Bone Jt J 102 B, 319–328. [Google Scholar]
  42. Burger JA, Kleeblad LJ, Laas N, Pearle AD (2020) Mid-term survivorship and patient-reported outcomes of robotic-arm assisted partial knee arthroplasty: A single-surgeon study of 1,018 knees. Bone Jt J 102, 108–116. [Google Scholar]
  43. Kayani B, Konan S, Tahmassebi J, Rowan FE, Haddad FS (2019) Infographic: Robotics are guiding arthroplasties to less pain and faster recovery. Bone Jt J 101B, 22–23. [Google Scholar]
  44. Clement ND, Deehan DJ, Patton JT (2019) Robot-assisted unicompartmental knee arthroplasty for patients with isolated medial compartment osteoarthritis is cost-effective: A Markov decision analysis. Bone Jt J 101-B, 1063–1070. [Google Scholar]
  45. Xu K, Li Y-M, Zhang HF, Wang CG, Xu YQ, Li ZJ (2014) Computer navigation in total hip arthroplasty: A meta-analysis ofrandomized controlled trials. Int J Surg 12, 528–533. [Google Scholar]
  46. Zagra L (2017) Advances in hip arthroplasty surgery: What is justified? EFORT Open Rev 2, 171–178. [Google Scholar]
  47. Kurtz S, Ong K, Lau E, Mowat F, Halpern M (2007) Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Jt Surg – Ser A 89, 780–785. [Google Scholar]
  48. Kayani B, Konan S, Ayuob A, Onochie E, Al-Jabri T, Haddad FS (2019) Robotic technology in total knee arthroplasty: A systematic review. EFORT Open Rev 4, 611–617. [Google Scholar]
  49. Sousa PL, Sculco PK, Mayman DJ, Jerabek SA, Ast MP, Chalmers BP (2020) Robots in the operating room during hip and knee arthroplasty. Curr Rev Musculoskelet Med 13, 309–317. [Google Scholar]
  50. Chen X, Xiong J, Wang P, Zhu S, Qi W, Peng H, Yu L, Qian W (2018) Robotic-assisted compared with conventional total hip arthroplasty: Systematic review and meta-analysis. Postgrad Med J 94, 335–341. [Google Scholar]
  51. Subramanian P, Wainwright TW, Bahadori S, Middleton RG (2019) A review of the evolution of robotic-assisted total hip arthroplasty. HIP Int 29, 232–238. [Google Scholar]
  52. Karunaratne S, Duan M, Pappas E, Fritsch B, Boyle R, Gupta S, Stalley P, Horsley M, Steffens D (2019) The effectiveness of robotic hip and knee arthroplasty on patient-reported outcomes: A systematic review and meta-analysis. Int Orthop 43, 1283–1295. [Google Scholar]
  53. Han PF, Chen CL, Zhang ZL, Han YC, Wei L, Li PC, Wei XC (2019) Robotics-assisted versus conventional manual approaches for total hip arthroplasty: A systematic review and meta-analysis of comparative studies. Int J Med Robot Comput Assist Surg 15, e1990. [Google Scholar]
  54. Perets I, Mu BH, Mont MA, Rivkin G, Kandel L, Domb BG (2020) Current topics in robotic-assisted total hip arthroplasty: A review. HIP Int 30, 118–124. [Google Scholar]
  55. Yeroushalmi D, Feng J, Nherera L, Trueman P, Schwarzkopf R (2020) Early economic analysis of robotic-assisted unicondylar knee arthroplasty may be cost effective in patients with end-stage osteoarthritis. J Knee Surg. [Google Scholar]
  56. Maldonado DR, Go CC, Kyin C, Rosinsky PJ, Shapira J, Lall CA, Domb BG (2021) Robotic arm-assisted total hip arthroplasty is more cost-effective than manual total hip arthroplasty: A Markov model analysis. J Am Acad Orthop Surg 17, e168–e177. [Google Scholar]
  57. Burn E, Prieto-Alhambra D, Hamilton TW, Kennedy JA, Murray DW, Pinedo-Villanueva R (2020) Threshold for computer- and robot-assisted knee and hip replacements in the English National Health Service. Value Heal 23, 719–726. [Google Scholar]
  58. Tack P, Victor J, Gemmel P, Annemans L (2020) Do custom 3D-printed revision acetabular implants provide enough value to justify the additional costs? The health-economic comparison of a new porous 3D-printed hip implant for revision arthroplasty of Paprosky type 3B acetabular defects and its closest alternative Orthop Traumatol Surg Res 107, 102600.. [Google Scholar]
  59. Nelson M, Russell T, Crossley K, Bourke M, McPhail S (2019) Cost-effectiveness of telerehabilitation versus traditional care after total hip replacement: A trial-based economic evaluation. J Telemed Telecare. [Google Scholar]
  60. Malchau H (1995) On the importance of stepwise introduction of new hip implant technology: assessment of total hip replacement using clinical evaluation, radiostereometry, digitised radiography and a national hip registry. University of Gothenburg. [Google Scholar]
  61. Burnham JM, Meta F, Lizzio V, Makhni EC, Bozic KJ (2017) Technology assessment and cost-effectiveness in orthopedics: How to measure outcomes and deliver value in a constantly changing healthcare environment. Curr Rev Musculoskelet Med 10, 233–239. [Google Scholar]
  62. Benson M, Boehler N, Szendroi M, Zagra L, Puget J (2014) Ethical standards for orthopaedic surgeons. Bone Jt J 96 B, 1130–1132. [Google Scholar]
  63. Kouyoumdjian P, Mansour J, Assi C, Caton J, Lustig S, Coulomb R (2020) Current concepts in robotic total hip arthroplasty. SICOT-J 6, 45. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  64. Kayani B, Konan S, Ayuob A, Onochie E, Al-Jabri T, Haddad FS (2019) Robotic technology in total knee arthroplasty: A systematic review. EFORT Open Rev 4, 611–617. [Google Scholar]
  65. Song EK, Seon JK, Yim JH, Netravali NA, Bargar WL (2013) Robotic-assisted TKA reduces postoperative alignment outliers and improves gap balance compared to conventional TKA knee, Clinical Orthopaedics and Related Research. New York LLC, Springer. p. 118–126. [Google Scholar]
  66. Ollivier M, Parratte S, Lino L, Flecher X, Pesenti S, Argenson JN (2018) No benefit of computer-assisted TKA: 10-year results of a prospective randomized study. Clin Orthop Relat Res 476, 126–134. [Google Scholar]
  67. Zhao L, Xu F, Lao S, Zhao J, Wei Q (2020) Comparison of the clinical effects of computer-assisted and traditional techniques in bilateral total knee arthroplasty: A meta-analysis of randomized controlled trials. PLoS One 15, (9), e0239341. [Google Scholar]
  68. Liow MHL, Xia Z, Wong MK, Tay KJ, Yeo SJ, Chin PL (2014) Robot-assisted total knee arthroplasty accurately restores the joint line and mechanical axis: A prospective randomised study. J Arthroplasty 29, 2373–2377. [Google Scholar]
  69. MacDessi SJ, Griffiths-Jones W, Chen DB, Griffiths-Jones S, Wood JA, Diwan AD, Harris IA (2020) Restoring the constitutional alignment with a restrictive kinematic protocol improves quantitative soft-tissue balance in total knee arthroplasty: A randomized controlled trial. Bone Jt J 102, 117–124. [Google Scholar]
  70. Hueter C (1883) Fünfte Abtheilung: Die Verletzung und Krankheiten des Hüftgelenks. In: Grundriss der Chirurgie, 2nd edn. Leipzig, FCW Vogel. [Google Scholar]
  71. Smith-Petersen MN (1949) Approach to and exposure of the hip joint for mold arthroplasty. J Bone Jt Surg Am 31A(1), 40–46. [Google Scholar]
  72. Smith-Petersen MN (1917) A new supra-articular subperiosteal approach to the hip joint. J Bone Jt Surg Am s2, 592–595. [Google Scholar]
  73. Light TR, Keggi KJ (1980) Anterior approach to hip arthroplasty. Clin Orthop Relat Res 152, 255–260. [Google Scholar]
  74. Judet J, Judet H (1985) Anterior approach in total hip arthroplasty. Press Med 4, 1031–1033. [Google Scholar]
  75. Mayr E, Krismer M, Ertl M, Kessler O, Thaler M, Nogler M (2006) Uncompromised quality of the cement mantle in exeter femoral components implanted through a minimally-invasive direct anterior approach. J Bone Jt Surg – Ser B 88, 1252–1256. [Google Scholar]
  76. Thaler M, Dammerer D, Ban M, Leitner H, Khosravi I, Nogler M (2021) Femoral revision total hip arthroplasty performed through the interval of the direct anterior approach. J Clin Med 10, 337. [Google Scholar]
  77. Patel NN, Shah JA, Erens GA (2019) Current trends in clinical practice for the direct anterior approach total hip arthroplasty. J Arthroplasty 34, 1987–1993.e3. [Google Scholar]
  78. Abdel MP, Berry DJ (2019) Current practice trends in primary hip and knee arthroplasties among members of the American Association of hip and knee surgeons: A long-term update. J Arthroplasty 34, S24–S27. [Google Scholar]
  79. Woolson ST (2020) A survey of Hip Society surgeons concerning the direct anterior approach total hip arthroplasty. Bone Joint J 102-B(7_Supple_B), 57–61. [Google Scholar]
  80. Thaler M, Khosravi I, Putzer D, Siebenrock KA, Zagra L (2020) Return to sports after total hip arthroplasty: A survey among members of the european hip society. J Arthroplasty. [Google Scholar]
  81. Noyer D, Caton JH (2017) Once upon a time. Dual mobility: History. Int Orthop 41, 611–618. [Google Scholar]
  82. Nogler MM, Thaler MR (2017) The direct anterior approach for hip revision: Accessing the entire femoral diaphysis without endangering the nerve supply. J Arthroplasty 32, 510–514. [Google Scholar]
  83. Thaler M, Dammerer D, Krismer M, Ban M, Lechner R, Nogler M (2019) Extension of the direct anterior approach for the treatment of periprosthetic femoral fractures. J Arthroplasty 34, 2449–2453. [Google Scholar]
  84. Thaler M, Lechner R, Dammerer D, Leitner H, Khosravi I, Nogler M (2020) The direct anterior approach: treating periprosthetic joint infection of the hip using two-stage revision arthroplasty. Arch Orthop Trauma Surg 140, 255–262. [Google Scholar]
  85. Thaler M, Dammerer D, Leitner H, Lindtner RA, Nogler M (2020) Mid-term follow-up of the direct anterior approach in acetabular revision hip arthroplasty using a reconstruction cage with impaction grafting. J Arthroplasty 35, 1339–1343. [Google Scholar]
  86. Meermans G, Konan S, Das R, Volpin A, Haddad FS (2017) The direct anterior approach in total hip arthroplasty a systematic review of the literature. Bone Jt J 99B, 732–740. [Google Scholar]
  87. Foissey C, Fauvernier M, Fary C, Servien E, Lustig S, Batailler C (2020) Total hip arthroplasty performed by direct anterior approach – Does experience influence the learning curve? SICOT-J 6, 15. [CrossRef] [EDP Sciences] [Google Scholar]
  88. Bhandari M, Matta JM, Dodgin D, Clark C, Kregor P, Bradley G, Little L (2009) Outcomes following the single-incision anterior approach to total hip arthroplasty: A multicenter observational study. Orthop Clin North Am 40, 329–334. [Google Scholar]
  89. Nakata K, Nishikawa M, Yamamoto K, Hirota S, Yoshikawa H (2009) A clinical comparative study of the direct anterior with mini-posterior approach. Two Consecutive Series. J Arthroplasty 24, 698–704. [Google Scholar]
  90. Spaans AJ, van den Hout JAAM, Bolder SBT (2012) High complication rate in the early experience of minimally invasive total hip arthroplasty by the direct anterior approach. Acta Orthop 83, 342–346. [Google Scholar]
  91. Barnett SL, Peters DJ, Hamilton WG, Ziran NM, Gorab RS, Matta JM (2016) Is the anterior approach safe? Early complication rate associated with 5090 consecutive primary total hip arthroplasty procedures performed using the anterior approach. J Arthroplasty 31, 2291–2294. [PubMed] [Google Scholar]
  92. Wang Z, Hou JZ, Wu CH, Zhou YJ, Gu XM, Wang HH, Feng W, Cheng YX, Sheng X, Bao HW (2018) A systematic review and meta-analysis of direct anterior approach versus posterior approach in total hip arthroplasty. J Orthop Surg Res 13, 229. [Google Scholar]
  93. Berend KR, Mirza AJ, Morris MJ, Lombardi AV (2016) Risk of periprosthetic fractures with direct anterior primary total hip arthroplasty. J Arthroplasty 31, 2295–2298. [Google Scholar]
  94. Sheth D, Cafri G, Inacio MCS, Paxton EW, Namba RS (2015) Anterior and anterolateral approaches for THA are associated with lower dislocation risk without higher revision risk. Clin Orthop Relat Res 473, 3401–3408. [Google Scholar]
  95. Tsikandylakis G, Overgaard S, Zagra L, Kärrholm J (2020) Global diversity in bearings in primary THA. EFORT Open Rev 5, 763–775. [Google Scholar]
  96. Swedish Hip Arthroplasty Register Annual Report 2017. Accessed 2 Jan 2021. [Google Scholar]
  97. Norwegian National Advisory Unit, on Arthroplasty and Hip Fractures June 2019 – Nasjonalt Register for Leddproteser. [Google Scholar]
  98. The National Joint Registry 16th Annual Report 2019 [Internet] – PubMed. Accessed 2 Jan 2021. [Google Scholar]
  99. Muratoglu OK, Bragdon CR, O’Connor D, Perinchief RS, Estok DM, Jasty M, Harris WH (2001) Larger diameter femoral heads used in conjunction with a highly cross-linked ultra-high molecular weight polyethylene: A new concept. J Arthroplasty 16, 24–30. [Google Scholar]
  100. Kreipke R, Rogmark C, Pedersen AB, Kärrholm J, Hallan G, Havelin LI, Mäkelä K, Overgaard S (2019) Dual mobility cups: Effect on risk of revision of primary total hip arthroplasty due to osteoarthritis: A matched population-based study using the nordic arthroplasty register association database. J Bone Jt Surg – Am 101, 169–176. [Google Scholar]
  101. Heckmann N, Weitzman DS, Jaffri H, Berry DJ, Springer BD, Lieberman JR (2020) Trends in the use of dual mobility bearings in hip arthroplasty. Bone Jt J 102-B, 27–32. [Google Scholar]
  102. Mohaddes M, Cnudde P, Rolfson O, Wall A, Kärrholm J (2017) Use of dual-mobility cup in revision hip arthroplasty reduces the risk for further dislocation: analysis of seven hundred and ninety one first-time revisions performed due to dislocation, reported to the Swedish Hip Arthroplasty Register. Int Orthop 41, 583–588. [Google Scholar]
  103. Neri T, Boyer B, Batailler C, Klasan A, Lustig S, Philippot R, Farizon F (2020) Dual mobility cups for total hip arthroplasty: Tips and tricks. SICOT-J 6, 17. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  104. Khoshbin A, Haddad FS, Ward S, O hEireamhoin S, Wu J, Nherera L, Atrey A (2020) A cost-effectiveness assessment of dual-mobility bearings in revision hip arthroplasty. Bone Jt J 102-B, 1128–1135. [Google Scholar]
  105. Fabry C, Langlois J, Hamadouche M, Bader R (2016) Intra-prosthetic dislocation of dual-mobility cups after total hip arthroplasty: potential causes from a clinical and biomechanical perspective. Int Orthop 40, 901–906. [Google Scholar]
  106. Jones CW, De Martino I, D’Apolito R, Nocon AA, Sculco PK, Sculco TP (2019) The use of dual-mobility bearings in patients at high risk of dislocation. Bone Jt J 101-B, 41–45. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.