Open Access
Review
Issue
SICOT-J
Volume 10, 2024
Article Number 15
Number of page(s) 7
Section Spine
DOI https://doi.org/10.1051/sicotj/2024011
Published online 30 April 2024
  1. Pehrsson K, Larsson S, Oden A, Nachemson A (1992) Long-term follow-up of patients with untreated scoliosis. A study of mortality, causes of death, and symptoms. Spine (Phila Pa 1976) 17(9), 1091–1096. [CrossRef] [PubMed] [Google Scholar]
  2. Fernandes P, Weinstein SL (2007) Natural history of early onset scoliosis. J Bone Joint Surg Am 89(Suppl 1), 21–33. [PubMed] [Google Scholar]
  3. Karol LA, Johnston C, Mladenov K, Schochet P, Walters P, Browne RH (2008) Pulmonary function following early thoracic fusion in non-neuromuscular scoliosis. JBJS 90(6), 1272–1281. [CrossRef] [PubMed] [Google Scholar]
  4. Goldberg CJ, Gillic I, Connaughton O, Moore DP, Fogarty EE, Canny GJ, Dowling FE (2003) Respiratory function and cosmesis at maturity in infantile-onset scoliosis. Spine (Phila Pa 1976) 28(20), 2397–2406. [CrossRef] [PubMed] [Google Scholar]
  5. Winter RB, Moe JH (1982) The results of spinal arthrodesis for congenital spinal deformity in patients younger than five years old. JBJS 64(3), 419–432. [CrossRef] [PubMed] [Google Scholar]
  6. Moe JH, Kharrat K, Winter RB, Cummine JL (1984) Harrington instrumentation without fusion plus external orthotic support for the treatment of difficult curvature problems in young children. Clin Orthop Relat Res 185, 35–45. [Google Scholar]
  7. Thompson GH, Akbarnia BA, Kostial P, Poe-Kochert C, Armstrong DG, Roh J, et al. (2005) Comparison of single and dual growing rod techniques followed through definitive surgery: A preliminary study. Spine (Phila Pa 1976) 30(18), 2039–2044. [CrossRef] [PubMed] [Google Scholar]
  8. Klemme WR, Denis F, Winter RB, Lonstein JW, Koop SE (1997) Spinal instrumentation without fusion for progressive scoliosis in young children. J Pediatr Orthop 17(6), 734–742. [PubMed] [Google Scholar]
  9. Akbarnia BA, Marks DS, Boachie-Adjei O, Thompson AG, Asher MA (2005) Dual growing rod technique for the treatment of progressive early-onset scoliosis: A multicenter study. Spine 30(17S), S46–S57. [CrossRef] [PubMed] [Google Scholar]
  10. Cahill PJ, Marvil S, Cuddihy L, Schutt C, Idema J, Clements DH, et al. (2010) Autofusion in the immature spine treated with growing rods. Spine (Phila Pa 1976) 35(22), E1199–E1203. [CrossRef] [PubMed] [Google Scholar]
  11. Akbarnia BA, Breakwell LM, Marks DS, McCarthy RE, Thompson AG, Canale SK, et al. (2008) Dual growing rod technique followed for three to eleven years until final fusion: The effect of frequency of lengthening. Spine (Phila Pa 1976) 33(9), 984–990. [CrossRef] [PubMed] [Google Scholar]
  12. Akbarnia BA, Marks DS, Boachie-Adjei O, Thompson AG, Asher MA (2005) Dual growing rod technique for the treatment of progressive early-onset scoliosis: A multicenter study. Spine (Phila Pa 1976) 30(17 Suppl), S46–S57. [CrossRef] [PubMed] [Google Scholar]
  13. Fisk JR, Peterson HA, Laughlin R, Lutz R (1995) Spontaneous fusion in scoliosis after instrumentation without arthrodesis. J Pediatr Orthop 15(2), 182–186. [CrossRef] [PubMed] [Google Scholar]
  14. Kocyigit IA, Olgun ZD, Demirkiran HG, Ayvaz M, Yazici M (2017) Graduation protocol after growing-rod treatment: Removal of implants without new instrumentation is not a realistic approach. J Bone Joint Surg Am 99(18), 1554–1564. [CrossRef] [PubMed] [Google Scholar]
  15. Jain A, Sponseller PD, Flynn JM, Shah SA, Thompson GH, Emans JB, et al. (2016) Avoidance of “final” surgical fusion after growing-rod treatment for early-onset scoliosis. J Bone Joint Surg Am 98(13), 1073–1078. [CrossRef] [PubMed] [Google Scholar]
  16. Poe-Kochert C, Shannon C, Pawelek JB, Thompson GH, Hardesty CK, Marks DS, et al. (2016) Final fusion after growing-rod treatment for early onset scoliosis: Is it really final? J Bone Joint Surg Am 98(22), 1913–1917. [CrossRef] [PubMed] [Google Scholar]
  17. Gardner A, Beaven A, Marks D, Spilsbury J, Mehta J, Newton Ede M (2017) Does the law of diminishing returns apply to the lengthening of the MCGR rod in early onset scoliosis with reference to growth velocity? J Spine Surg 3(4), 525–530. [CrossRef] [PubMed] [Google Scholar]
  18. Mardjetko SM, Hammerberg KW, Lubicky JP, Fister JS (1992) The Luque trolley revisited. Review of nine cases requiring revision. Spine (Phila Pa 1976) 17(5), 582–589. [CrossRef] [PubMed] [Google Scholar]
  19. Huber AK, Patel N, Pagani CA, Marini S, Padmanabhan KR, Matera DL, et al. (2020) Immobilization after injury alters extracellular matrix and stem cell fate. J Clin Invest 130(10), 5444–5460. [CrossRef] [PubMed] [Google Scholar]
  20. Yilgor C, Demirkiran G, Ayvaz M, Yazici M (2012) Is expansion thoracoplasty a safe procedure for mobility and growth potential of the spine? Spontaneous fusion after multiple chest distractions in young children, J Pediatr Orthop 32(5), 483–489. [CrossRef] [PubMed] [Google Scholar]
  21. Lattig F, Taurman R, Hell AK (2016) Treatment of early-onset spinal deformity (EOSD) with VEPTR: A challenge for the final correction spondylodesis – a case series clinical spine. Surgery 29(5), E246–E251. [Google Scholar]
  22. Betz RR, Petrizzo AM, Kerner PJ, Falatyn SP, Clements DH, Huss GK (2006) Allograft versus no graft with a posterior multisegmented hook system for the treatment of idiopathic scoliosis. Spine (Phila Pa 1976) 31(2), 121–127. [CrossRef] [PubMed] [Google Scholar]
  23. Sawyer JR, de Mendonça RG, Flynn TS, Samdani AF, El-Hawary R, Spurway AJ, et al. (2016) Complications and radiographic outcomes of posterior spinal fusion and observation in patients who have undergone distraction-based treatment for early onset scoliosis. Spine Deform 4(6), 407–412. [CrossRef] [PubMed] [Google Scholar]
  24. Flynn JM, Tomlinson LA, Pawelek J, Thompson GH, McCarthy R, Akbarnia BA (2013) Growing-rod graduates: Lessons learned from ninety-nine patients who completed lengthening. J Bone Joint Surg Am 95(19), 1745–1750. [CrossRef] [PubMed] [Google Scholar]
  25. Sankar WN, Skaggs DL, Yazici M, Johnston CE 2nd, Shah SA, Javidan P, et al. (2011) Lengthening of dual growing rods and the law of diminishing returns. Spine (Phila Pa 1976) 36(10), 806–809. [CrossRef] [PubMed] [Google Scholar]
  26. Noordeen HM, Shah SA, Elsebaie HB, Garrido E, Farooq N, Al Mukhtar M (2011) In vivo distraction force and length measurements of growing rods: Which factors influence the ability to lengthen? Spine 36(26), 2299–2303. [CrossRef] [PubMed] [Google Scholar]
  27. Cheung KM, Cheung JP, Samartzis D, Mak KC, Wong YW, Cheung WY, et al. (2012) Magnetically controlled growing rods for severe spinal curvature in young children: A prospective case series. Lancet 379(9830), 1967–1974. [CrossRef] [PubMed] [Google Scholar]
  28. Campbell RM, Hell-Vocke AK (2003) Growth of the thoracic spine in congenital scoliosis after expansion thoracoplasty. J Bone Joint Surg Am 85, 409–420. [CrossRef] [PubMed] [Google Scholar]
  29. Storer SK, Vitale MG, Hyman JE, Lee FY, Choe JC, Roye DP Jr (2005) Correction of adolescent idiopathic scoliosis using thoracic pedicle screw fixation versus hook constructs. J Pediatr Orthop 25(4), 415–419. [CrossRef] [PubMed] [Google Scholar]
  30. Elnady B, El-Sharkawi MM, El-Meshtawy M, Adam FF, Said GZ (2017) Posterior-only surgical correction of adolescent idiopathic scoliosis: An Egyptian experience. SICOT-J 3, 69. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  31. Elnady B, El-Sharkawi M, El-Meshtawy M, Adam F, Hassan K (2015) High density pedicle screws through posterior only approach for surgical correction of severe adolescent idiopathic scoliosis> 70o Egyptian. Spine J 15, 37–44. [Google Scholar]
  32. Mihara Y, Chung WH, Mohamad SM, Chiu CK, Chan CYW, Kwan MK (2021) Predictive factors for correction rate in severe idiopathic scoliosis (Cobb angle ≥ 90°): An analysis of 128 patients. Eur Spine J 30(3), 653–660. [CrossRef] [PubMed] [Google Scholar]
  33. Ahuja K, Ifthekar S, Mittal S, Bali SK, Yadav G, Goyal N, et al. (2023) Is final fusion necessary for growing-rod graduates: A systematic review and meta-analysis. Global Spine J 13(1), 209–218. [CrossRef] [PubMed] [Google Scholar]
  34. Vittoria F, Ceconi V, Fantina L, Barbi E, Carbone M (2022) Effectiveness and safety of a one-yearly elongation approach of growing rods in the treatment of early-onset scoliosis: A case series of 40 patients with definitive fusion. Front Pediatr 10, 895065. [Google Scholar]
  35. Du JY, Poe-Kochert C, Thompson GH, Hardesty CK, Pawelek JB, Flynn JM, Emans JB (2020) Risk factors for reoperation following final fusion after the treatment of early-onset scoliosis with traditional growing rods. J Bone Joint Surg Am 102(19), 1672–1678. [CrossRef] [PubMed] [Google Scholar]
  36. Yang MJ, Rompala A, Samuel SP, Samdani A, Pahys J, Hwang S (2023) Autofusion with magnetically controlled growing rods: A case report. Cureus 15(3), e36638. [PubMed] [Google Scholar]
  37. Gardner A, Beaven A, Marks D, Spilsbury J, Mehta J, Ede MN (2017) Does the law of diminishing returns apply to the lengthening of the MCGR rod in early onset scoliosis with reference to growth velocity? J Spine Surg 3(4), 525–530. [CrossRef] [PubMed] [Google Scholar]
  38. Cheung JPY, Sze KY, Cheung KMC, Zhang T (2021) The first magnetically controlled growing rod (MCGR) in the world – lessons learned and how the identified complications helped to develop the implant in the past decade: Case report. BMC Musculoskelet Disord 22(1), 319. [CrossRef] [PubMed] [Google Scholar]
  39. Green AH, Brzezinski A, Ishmael T, Adolfsen S, Bowe JA (2021) Premature spinal fusion after insertion of magnetically controlled growing rods for treatment of early-onset scoliosis: Illustrative case. J Neurosurg Case Lessons 2(17), CASE21446. [CrossRef] [Google Scholar]
  40. Jain A, Sponseller PD, Flynn JM, Shah SA, Thompson GH, Emans JB, et al. (2016) Avoidance of “final” surgical fusion after growing-rod treatment for early-onset scoliosis. J Bone Joint Surg Am 98(13), 1073–1078. [CrossRef] [PubMed] [Google Scholar]
  41. Bouthors C, Izatt MT, Adam CJ, Pearcy MJ, Labrom RD, Askin GN (2018) Minimizing spine autofusion with the use of semiconstrained growing rods for early onset scoliosis in children. J Pediatr Orthop 38(10), e562–e571. [CrossRef] [PubMed] [Google Scholar]
  42. Miladi L, Gaume M, Khouri N, Johnson M, Topouchian V, Glorion C (2018) Minimally invasive surgery for neuromuscular scoliosis: Results and complications in a series of one hundred patients. Spine (Phila Pa 1976) 43(16), e968–e975. [Google Scholar]
  43. Teoh KH, Winson DM, James SH, Jones A, Howes J, Davies PR, Ahuja S (2016) Do magnetic growing rods have lower complication rates compared with conventional growing rods? Spine J 16(4 Suppl), S40–S44. [CrossRef] [PubMed] [Google Scholar]
  44. Sankar WN, Acevedo DC, Skaggs DL (2010) Comparison of complications among growing spinal implants. Spine (Phila Pa 1976) 35(23), 2091–2096. [CrossRef] [PubMed] [Google Scholar]
  45. Miladi L (2020) The minimally invasive bipolar technique for the treatment of spinal deformities in children and adolescents. Coluna/Columna 19, 308–313. [CrossRef] [Google Scholar]
  46. Oliveira R, Defino H, Costa H (2021) Preliminary results of the bipolar technique in the treatment of neuromuscular scoliosis. Coluna/Columna 20, 169–173. [CrossRef] [Google Scholar]
  47. El-Sharkawi M, Koptan W, Shawky A, Mostafa A, Tammam H, Gad W, Aboloyoun N (2016) Management of early onset scoliosis using growing spine profiler (GSP). Global Spine J 6, s-0036. [Google Scholar]
  48. El-Sharkawi MM, Alkot A (2021) Egyptian experience of surgical management of early-onset scoliosis. CRC Press. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.