Open Access
Review
Issue
SICOT-J
Volume 3, 2017
Article Number 17
Number of page(s) 8
Section Hip
DOI https://doi.org/10.1051/sicotj/2017007
Published online 06 March 2017
  1. Baksh D, Song L, Tuan RS (2004) Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J Cell Mol Med 8(3), 301–316. [CrossRef] [PubMed] [Google Scholar]
  2. Gulotta LV, Kovacevic D, Ehteshami JR, Dagher E, Packer JD, Rodeo SA (2009) Application of bone marrow-derived mesenchymal stem cells in a rotator cuff repair model. Am J Sports Med 37(11), 2126–2133. [CrossRef] [Google Scholar]
  3. Nejadnik H, Hui JH, Feng Choong EP, Tai BC, Lee EH (2010) Autologous bone marrow-derived mesenchymal stem cells versus autologous chondrocyte implantation: an observational cohort study. Am J Sports Med 38(6), 1110–1116. [CrossRef] [Google Scholar]
  4. Brazelton TR, Rossi FM, Keshet GI, Blau HM (2000) From marrow to brain: expression of neuronal phenotypes in adult mice. Science 290(5497), 1775–1779. [CrossRef] [PubMed] [Google Scholar]
  5. Bruder SP, Jaiswal N, Haynesworth SE (1997) Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 64(2), 278–294. [Google Scholar]
  6. Kopen GC, Prockop DJ, Phinney DG (1999) Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA 96(19), 10711–10716. [CrossRef] [Google Scholar]
  7. Xie A, Nie L, Shen G, Cui Z, Xu P, Ge H, Tan Q (2014) The application of autologous plateletrich plasma gel in cartilage regeneration. Mol Med Rep 10(3), 1642–1648. [PubMed] [Google Scholar]
  8. Majumdar MK, Thiede MA, Mosca JD, Moorman M, Gerson SL (1998) Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J Cell Physio 176(1), 57–66. [CrossRef] [Google Scholar]
  9. Bain BJ (1996) The bone marrow aspirate of healthy subjects. Br J Haematol 94(1), 206–209. [CrossRef] [PubMed] [Google Scholar]
  10. Yamamura R, Yamane T, Hino M, Ohta K, Shibata H, Tsuda I, Tatsumi N (2002) Possible automatic cell classification of bone marrow aspirate using the CELL-DYN 4000 automatic blood cell analyzer. J Clin Lab Anal 16(2), 86–90. [CrossRef] [PubMed] [Google Scholar]
  11. Kim M, Kim J, Lim J, Kim Y, Han K, Kang CS (2004) Use of an automated hematology analyzer and flow cytometry to assess bone marrow cellularity and differential cell count. Ann Clin Lab Sci 34(3), 307–313. [PubMed] [Google Scholar]
  12. Fortier LA, Potter HG, Rickey EJ, Schnabel LV, Foo LF, Chong LR, Stokol T, Cheetham J, Nixon AJ (2010) Concentrated bone marrow aspirate improves full-thickness cartilage repair compared with microfracture in the equine model. J Bone Joint Surg Am 92(10), 1927–1937. [CrossRef] [PubMed] [Google Scholar]
  13. Hyer CF, Berlet GC, Bussewitz BW, Hankins T, Ziegler HL, Philbin TM (2013) Quantitative assessment of the yield of osteoblastic connective tissue progenitors in bone marrow aspirate from the iliac crest, tibia, and calcaneus. J Bone Joint Surg Am 95(14), 1312–1316. [CrossRef] [PubMed] [Google Scholar]
  14. Batinic D, Marusic M, Pavletic Z, Bogdanic V, Uzarevic B, Nemet D, Labar B (1990) Relationship between differing volumes of bone marrow aspirates and their cellular composition. Bone Marrow Transplant 6(2), 103–107. [Google Scholar]
  15. Muschler GF, Boehm C, Easley K (1997) Aspiration to obtain osteoblast progenitor cells from human bone marrow: the influence of aspiration volume. J Bone Joint Surg Am 79(11), 1699–1709. [CrossRef] [PubMed] [Google Scholar]
  16. Hernigou J, Picard L, Alves A, Silvera J, Homma Y, Hernigou P (2014) Understanding bone safety zones during bone marrow aspiration from the iliac crest: the sector rule. Int Orthop 38(11), 2377–2384. [CrossRef] [PubMed] [Google Scholar]
  17. Hernigou P, Homma Y, Flouzat Lachaniette CH, Poignard A, Allain J, Chevallier N, Rouard H (2013) Benefits of small volume and small syringe for bone marrow aspirations of mesenchymal stem cells. Int Orthop 37(11), 2279–2287. [CrossRef] [PubMed] [Google Scholar]
  18. Health Quality Ontario (2005) Osteogenic protein-1 for long bone nonunion: an evidence-based analysis. Ontario Health Technology Assessment Series 5(6), 1–57. [Google Scholar]
  19. Hernigou P, Beaujean F (2002) Treatment of osteonecrosis with autologous bone marrow grafting. Clin Orthop Relat Res 405, 14–23. [CrossRef] [Google Scholar]
  20. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411), 143–147. [CrossRef] [PubMed] [Google Scholar]
  21. Hernigou P, Poignard A, Beaujean F, Beaujean F, Rouard H, Rouard H (2005) Percutaneous autologous bone-marrow grafting for nonunions. Influence of the number and concentration of progenitor cells. J Bone Joint Surg Am 87(7), 1430–1437. [PubMed] [Google Scholar]
  22. Lee DH, Ryu KJ, Kim JW, Kang KC, Choi YR (2014) Bone marrow aspirate concentrate and platelet-rich plasma enhanced bone healing in distraction osteogenesis of the tibia. Clin Orthop Relat Res 472(12), 3789–3797. [CrossRef] [PubMed] [Google Scholar]
  23. Jager M, Jelinek EM, Wess KM, Scharfstadt A, Jacobson M, Kevy SV, Krauspe R (2009) Bone marrow concentrate: a novel strategy for bone defect treatment. Current Stem Cell Research & Therapy 4(1), 34–43. [Google Scholar]
  24. Muschler GF, Nitto H, Matsukura Y, Boehm C, Valdevit A, Kambic H, Davros W, Powell K, Easley K (2003). Spine fusion using cell matrix composites enriched in bone marrow-derived cells. Clin Orthop Relat Res 407, 102–118. [CrossRef] [Google Scholar]
  25. McCarrel T, Fortier L (2009). Temporal growth factor release from platelet-rich plasma, trehalose lyophilized platelets, and bone marrow aspirate and their effect on tendon and ligament gene expression. J Orthop Res 27(8), 1033–1042. [CrossRef] [PubMed] [Google Scholar]
  26. Moher D., Moher D., Liberati A., Tetzlaff J., Tetzlaff J., Altman D.G., Altman D.G., Group P., Group P. (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol 62(10), 1006–1012. [Google Scholar]
  27. Hyde M, Higgs P, Wiggins RD, Blane D (2015) A decade of research using the CASP scale: key findings and future directions. Aging Ment Health 19(7), 571–575. [CrossRef] [PubMed] [Google Scholar]
  28. Hernigou P, Mathieu G, Poignard A, Manicom O, Manicom O, Beaujean F, Beaujean F, Rouard H (2006) Percutaneous autologous bone-marrow grafting for nonunions. Surgical technique. J Bone Joint Surg Am 88, 322–327. [CrossRef] [PubMed] [Google Scholar]
  29. Kasten P, Beyen I, Egermann M, Suda AJ, Moghaddam AA, Zimmermann G, Luginbuhl R (2008) Instant stem cell therapy: characterization and concentration of human mesenchymal stem cells in vitro. Eur Cell Mater 16, 47–55. [Google Scholar]
  30. Connolly J, Guse R, Lippiello L, Dehne R (1989) Development of an osteogenic bone-marrow preparation. J Bone Joint Surg Am 71(5), 684–691. [CrossRef] [PubMed] [Google Scholar]
  31. Kassem MS (2013) Percutaneous autogenous bone marrow injection for delayed union or non union of fractures after internal fixation. Acta Orthop Belg 79(6), 711–717. [PubMed] [Google Scholar]
  32. Hernigou P, Guissou I, Homma Y, Poignard A, Chevallier N, Rouard H, Flouzat Lachaniette CH (2015) Percutaneous injection of bone marrow mesenchymal stem cells for ankle non-unions decreases complications in patients with diabetes. Int Orthop 39(8), 1639–1643. [CrossRef] [PubMed] [Google Scholar]
  33. Yoshioka T, Mishima H, Akaogi H, Sakai S, Li M, Ochiai N (2011) Concentrated autologous bone marrow aspirate transplantation treatment for corticosteroid-induced osteonecrosis of the femoral head in systemic lupus erythematosus. Int Orthop 35(6), 823–829. [CrossRef] [PubMed] [Google Scholar]
  34. Zhao D, Liu B, Wang B, Yang L, Xie H, Huang S, Zhang Y, Wei X. (2015) Autologous bone marrow mesenchymal stem cells associated with tantalum rod implantation and vascularized iliac grafting for the treatment of end-stage osteonecrosis of the femoral head. BioMed Research International 2015, 240506. [PubMed] [Google Scholar]
  35. Zhao D, Cui D, Wang B, Tian F, Guo L, Yang L, Liu B, Yu X (2012) Treatment of early stage osteonecrosis of the femoral head with autologous implantation of bone marrow-derived and cultured mesenchymal stem cells. Bone 50(1), 325–330. [CrossRef] [PubMed] [Google Scholar]
  36. Gangji V, Gangji V, Hauzeur JP, Hauzeur JP, Hauzeur JP, Matos C, Matos C, De Maertelaer V, Toungouz M, Lambermont M (2004) Treatment of osteonecrosis of the femoral head with implantation of autologous bone-marrow cells. A pilot study. J Bone Joint Surg Am 86-A(6), 1153–1160. [CrossRef] [PubMed] [Google Scholar]
  37. Gangji V, Hauzeur JP (2005) Treatment of osteonecrosis of the femoral head with implantation of autologous bone-marrow cells. Surgical technique. J Bone Joint Surg Am 87, Suppl 1 (Pt 1), 106–112. [CrossRef] [PubMed] [Google Scholar]
  38. Yasunaga Y, Terayama H, Yamasaki T, Ishikawa M, Ochi M (2007) Treatment of osteonecrosis of the femoral head with implantation of autologous bone-marrow mononuclear cells. Clin Calcium 17(6), 910–915. [PubMed] [Google Scholar]
  39. Kawate K, Yajima H, Ohgushi H, Kotobuki N, Sugimoto K, Ohmura T, Kobata Y, Shigematsu K, Kawamura K, Tamai K, Takakura Y (2006) Tissue-engineered approach for the treatment of steroid-induced osteonecrosis of the femoral head: transplantation of autologous mesenchymal stem cells cultured with beta-tricalcium phosphate ceramics and free vascularized fibula. J Artif Organs 30(12), 960–962. [CrossRef] [Google Scholar]
  40. Noth U, Reichert J, Reppenhagen S, Steinert A, Rackwitz L, Eulert J, Beckmann J, Tingart M (2007) Cell based therapy for the treatment of femoral head necrosis. Der Orthopade 36(5), 466–471. [CrossRef] [PubMed] [Google Scholar]
  41. Hernigou P, Poignard A, Zilber S, Rouard H (2009) Cell therapy of hip osteonecrosis with autologous bone marrow grafting. Indian J Orthop 43(1), 40–45. [CrossRef] [PubMed] [Google Scholar]
  42. Gangji V, De Maertelaer V, Hauzeur JP (2011) Autologous bone marrow cell implantation in the treatment of non-traumatic osteonecrosis of the femoral head: Five year follow-up of a prospective controlled study. Bone 49(5), 1005–1009. [CrossRef] [PubMed] [Google Scholar]
  43. Martin JR, Houdek MT, Sierra RJ (2013) Use of concentrated bone marrow aspirate and platelet rich plasma during minimally invasive decompression of the femoral head in the treatment of osteonecrosis. Croat Med J 54(3), 219–224. [CrossRef] [PubMed] [Google Scholar]
  44. Hendrich C, Franz E, Waertel G, Krebs R, Jager M (2009) Safety of autologous bone marrow aspiration concentrate transplantation: initial experiences in 101 patients. Orthop Rev 1(2), e32. [CrossRef] [Google Scholar]
  45. Sen RK, Tripathy SK, Aggarwal S, Marwaha N, Sharma RR, Khandelwal N (2012) Early results of core decompression and autologous bone marrow mononuclear cells instillation in femoral head osteonecrosis: a randomized control study. J Arthroplasty 27(5), 679–686. [CrossRef] [PubMed] [Google Scholar]
  46. Gobbi A, Karnatzikos G, Scotti C, Mahajan V, Mazzucco L, Grigolo B (2011) One-step cartilage repair with bone marrow aspirate concentrated cells and collagen matrix in full-thickness knee cartilage lesions: results at 2-year follow-up. Cartilage 2(3), 286–299. [CrossRef] [PubMed] [Google Scholar]
  47. Giannini S, Buda R, Cavallo M, Ruffilli A, Cenacchi A, Cavallo C, Vannini F (2010) Cartilage repair evolution in post-traumatic osteochondral lesions of the talus: from open field autologous chondrocyte to bone-marrow-derived cells transplantation. Injury 41(11), 1196–1203. [CrossRef] [PubMed] [Google Scholar]
  48. Gobbi A, Chaurasia S, Karnatzikos G, Nakamura N (2015). Matrix-induced autologous chondrocyte implantation versus multipotent stem cells for the treatment of large patellofemoral chondral lesions: a nonrandomized prospective trial. Cartilage 6(2), 82–97. [CrossRef] [PubMed] [Google Scholar]
  49. Ellera Gomes JL, da Silva RC, Silla LM, Abreu MR, Pellanda R (2012) Conventional rotator cuff repair complemented by the aid of mononuclear autologous stem cells. Knee Surg Sports Traumatol Arthrosc 20(2), 373–377. [CrossRef] [PubMed] [Google Scholar]
  50. Hernigou P, Flouzat Lachaniette CH, Delambre J, Zilber S, Duffiet P, Chevallier N, Rouard H (2014) Biologic augmentation of rotator cuff repair with mesenchymal stem cells during arthroscopy improves healing and prevents further tears: a case-controlled study. Int Orthop 38(9), 1811–1818. [CrossRef] [PubMed] [Google Scholar]
  51. Centeno CJ, Al-Sayegh H, Bashir J, Goodyear S, Freeman MD (2015) A prospective multi-site registry study of a specific protocol of autologous bone marrow concentrate for the treatment of shoulder rotator cuff tears and osteoarthritis. J Pain Res 8, 269–276. [PubMed] [Google Scholar]
  52. Dashottar A, Costantini O, Borstad J (2014) A comparison of range of motion change across four posterior shoulder tightness measurements after external rotator fatigue. Int J Sports Phys Ther 9(4), 498–508. [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.