Issue
SICOT-J
Volume 3, 2017
Special Issue: "Computer Assisted Orthopaedic Surgery - Current State and Impact" Guest Editor: A. Adhikari
Article Number 66
Number of page(s) 5
Section Knee
DOI https://doi.org/10.1051/sicotj/2017054
Published online 11 December 2017
  1. Collier MB (2007) Factors associated with the loss of thickness of polyethylene tibial bearing after knee arthroplasty. JBJS Am 89, 1306–1314. [CrossRef] [Google Scholar]
  2. Lal K (2006) Use of stereolithographic templates for surgical and post orthodontic implant planning and placement. Part one. The concept. J Prosthodont 15, 51–58. [CrossRef] [PubMed] [Google Scholar]
  3. Chan K-Y, Teo YH (2012) Patient specific instrumentation for knee replacement verified by computer navigation: a case report. J Orthop Surg 20 (1), 111–114. [CrossRef] [Google Scholar]
  4. Ryan N (2012) Do patient specific guides improve coronal alignment in botany arthroplasty? CORR 470, 895–902. [CrossRef] [Google Scholar]
  5. Yann V (2014) Patient specific guides do not improve accuracy in botany arthroplasty-a prospective randomised controlled trial. CORR 472, 263–271. [CrossRef] [Google Scholar]
  6. Miller MC, et al. (2001) Effect of component placement on knee kinematics after arthroplasty with an unconstrained prosthesis. J Orthop Res 19 (4), 614–620. [CrossRef] [PubMed] [Google Scholar]
  7. Heinert G, et al. (2011) Patellofemoral kinematics in mobile bearing and fixed bearing posterior stabilised total knee replacements: a cadaveric study. Knee Surg Sports Traumatol Arthrosc 19 (6), 967–972. [CrossRef] [PubMed] [Google Scholar]
  8. Keshmiri A (2015) The influence of component alignment on patellar kinematics in building the arthroplasty: an in vivo study using navigation system. Acta Orthop 86 (4), 444–450. [CrossRef] [PubMed] [Google Scholar]
  9. Goyal N (2015) Does implant design influence the accuracy of patient specific instrumentation in botany arthroplasty? J Arthroplast 30 (9), 1526–1530. [CrossRef] [Google Scholar]
  10. Tilman P (2014) Small improvements in mechanical axis alignment achieved with MRI was a CD based patient specific instruments in quarterly arthroplasty: a randomised clinical trial. CORR 72, 2913–2922. [Google Scholar]
  11. Thienpont E, et al. (2015) The indirect cost of patient specific instruments. Acta Orthop Belg 81 (3), 462–470. [PubMed] [Google Scholar]
  12. Hafez MA (2012) Patient specific instrumentation: the past, the present and the future. In: Improving accuracy in knee arthroplasty. Thienpont E, Editor. Jaypee Brothers Medical Publishers (P) Ltd, pp. 149–168. [CrossRef] [Google Scholar]
  13. Adam S (2015) Systematic review of patient specific instrumentation in total knee arthroplasty: new but not improved. CORR 473, 151–158. [CrossRef] [Google Scholar]
  14. Ritter MA, Berend ME, Meding JB, et al. (2001) Long-term followup of anatomic graduated components posterior cruciate-retaining total knee replacement. CORR 388, 51–57. [CrossRef] [Google Scholar]
  15. Stulberg SD, Loan P, Sarin V (2002) Computer-assisted navigation in total knee replacement: results of an initial experience of thirty-five patients. JBJS Am 84 (Suppl 2), 90–98. [CrossRef] [Google Scholar]
  16. Klatt BA, Goyal N, Austin MS, et al. (2008) Custom-fit total knee arthroplasty (OtisKnee) results in malalignment. J Arthroplast 23 (4), 637–638. [CrossRef] [Google Scholar]
  17. Howell SM, Kuznik K, Hull ML, et al. (2008) Results of an initial experience with custom-fit positioning total knee arthroplasty in a series of 48 patients. Orthop 31 (9), 857–863. [CrossRef] [Google Scholar]
  18. Hafez MA, Edge AJ, Morris R (2004) Long-term results of total knee replacement: surgeon's versus patient's assessment. JBJS Br 86 (Suppl 1), 17. [CrossRef] [Google Scholar]
  19. Hafez MA, Sheikhedrees SM, Saweeres ES (2016) Anthropometry of Arabian arthritic knees: comparison to other ethnic groups and implant dimensions. J Arthroplast 31 (5), 1109–1116. [CrossRef] [Google Scholar]
  20. Elnemr MA, Hafez MA, Aboelnasr KM, Radwan MA (2016) Patient-specific template shortens the operative time in total knee arthroplasty in comparison to the conventional technique. COP 27 (2), 187–191. [Google Scholar]
  21. Hafez MA, Ghazal I (2016) Rate of blood transfusion in patients undergoing bilateral simultaneous total knee arthroplasty using patient-specific templates and conventional techniques: a comparative study. Remed Open Access 1, 1028. [Google Scholar]
  22. Mohamed MM, et al. (2016) Postoperative mechanical axis alignment and components position after conventional and patient-specific total knee arthroplasty. OJO 6, 8. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.